IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v469y2017icp625-630.html
   My bibliography  Save this article

Aspiration-induced dormancy promotes cooperation in the spatial Prisoner’s Dilemma games

Author

Listed:
  • Chen, Ya-Shan
  • Yang, Han-Xin
  • Guo, Wen-Zhong

Abstract

An interesting phenomenon is often observed in realistic systems. In the process of games, if the expected payoff from game interactions is not achieved, players would refuse to participate in the games. Inspired by this fact, we propose an aspiration-induced dormant mechanism, in which players quit the games and become dormant if their payoffs are less than the aspiration level. After a dormant period, they continue to play the game with others. Our results indicate an intermediate aspiration value, leading to the highest cooperation level in the spatial prisoner’s dilemma games. The effects of the dormant period are also studied.

Suggested Citation

  • Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong, 2017. "Aspiration-induced dormancy promotes cooperation in the spatial Prisoner’s Dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 625-630.
  • Handle: RePEc:eee:phsmap:v:469:y:2017:i:c:p:625-630
    DOI: 10.1016/j.physa.2016.11.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116308883
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.11.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Lei & Lin, Pei-jie & Chen, Ya-shan, 2014. "Voluntary strategy suppresses the positive impact of preferential selection in prisoner’s dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 233-239.
    2. Pu, Cun-Lai & Yang, Jian & Pei, Wen-Jiang & Tao, Yu-Ting & Lan, Shao-Hua, 2013. "Robustness analysis of static routing on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3293-3300.
    3. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    4. Zhi Li & Zhihu Yang & Te Wu & Long Wang, 2014. "Aspiration-Based Partner Switching Boosts Cooperation in Social Dilemmas," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-7, June.
    5. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    6. Yang, Han-Xin & Rong, Zhihai & Lu, Pei-Min & Zeng, Yong-Zhi, 2012. "Effects of aspiration on public cooperation in structured populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4043-4049.
    7. Lin, Ying-Ting & Yang, Han-Xin & Wu, Zhi-Xi & Wang, Bing-Hong, 2011. "Promotion of cooperation by aspiration-induced migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 77-82.
    8. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    9. Zhang, Jun & Fang, Yi-Ping & Du, Wen-Bo & Cao, Xian-Bin, 2011. "Promotion of cooperation in aspiration-based spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2258-2266.
    10. Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong, 2016. "Promotion of cooperation by payoff-driven migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 506-514.
    11. Pu, Cun-Lai & Pei, Wen-Jiang & Michaelson, Andrew, 2012. "Robustness analysis of network controllability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4420-4425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bin & Kang, Wenjun & Sheng, Jinfang & Cheng, Lvhang & Hou, Zhengang, 2021. "Effects of trust-driven updating rule based on reputation in spatial prisoner’s dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    2. Li, Cong & Xu, Hedong & Fan, Suohai, 2020. "Synergistic effects of self-optimization and imitation rules on the evolution of cooperation in the investor sharing game," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    3. Zhang, Liming & Huang, Changwei & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2021. "Cooperation guided by imitation, aspiration and conformity-driven dynamics in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    4. Liu, Danna & Huang, Changwei & Dai, Qionglin & Li, Haihong, 2019. "Positive correlation between strategy persistence and teaching ability promotes cooperation in evolutionary Prisoner’s Dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 267-274.
    5. Hao, Weijuan & Hu, Yuhan, 2024. "The implications of deep cooperation strategy for the evolution of cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    6. Szolnoki, Attila & Chen, Xiaojie, 2020. "Gradual learning supports cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Pan, Qiuhui & Wang, Yue & He, Mingfeng, 2022. "Impacts of special cooperation strategy with reward and punishment mechanism on cooperation evolution," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Zhao, Shanshan & Pan, Qiuhui & Zhu, Wenqiang & He, Mingfeng, 2023. "How “punishing evil and promoting good” promotes cooperation in social dilemma," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    9. Deng, Zheng-Hong & Wang, Zi-Ren & Wang, Huan-Bo & Huang, Yijie, 2021. "Impact of informers on the evolution of cooperation in prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    10. Lin, Jingyan & Huang, Changwei & Dai, Qionglin & Yang, Junzhong, 2020. "Evolutionary game dynamics of combining the payoff-driven and conformity-driven update rules," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong & Liu, Geng-Geng, 2018. "Promotion of cooperation based on swarm intelligence in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 614-620.
    2. Jin, Jiahua & Shen, Chen & Chu, Chen & Shi, Lei, 2017. "Incorporating dominant environment into individual fitness promotes cooperation in the spatial prisoners' dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 70-75.
    3. Wang, Lu & Ye, Shun-Qiang & Cheong, Kang Hao & Bao, Wei & Xie, Neng-gang, 2018. "The role of emotions in spatial prisoner’s dilemma game with voluntary participation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1396-1407.
    4. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    5. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
    6. Wang, Zhen & Chen, Tong & Wang, Yongjie, 2017. "Leadership by example promotes the emergence of cooperation in public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 100-105.
    7. Gao, Lei & Li, Yaotang & Wang, Zhen & Wang, Rui-Wu, 2022. "Asymmetric strategy setup solve the Prisoner’s Dilemma of the evolution of mutualism," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    8. Qian, Jia-Li & Zhou, Yin-Xiang & Hao, Qing-Yi, 2024. "The emergence of cooperative behavior based on random payoff and heterogeneity of concerning social image," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    9. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Information fusion based on reputation and payoff promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    10. Zhang, Lulu & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of donation behavior on the evolution of cooperation in social dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.
    12. Huang, Chaochao & Wang, Chaoqian, 2024. "Memory-based involution dilemma on square lattices," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    13. Egas, Martijn & Riedl, Arno, 2005. "The Economics of Altruistic Punishment and the Demise of Cooperation," IZA Discussion Papers 1646, Institute of Labor Economics (IZA).
    14. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    15. André Barreira da Silva Rocha & Annick Laruelle, 2012. "Evolution of Cooperation in the Snowdrift Game with Incomplete Information and Heterogeneous Population," Discussion Papers in Economics 12/12, Division of Economics, School of Business, University of Leicester, revised Sep 2012.
    16. Luis R. Izquierdo & Segismundo S. Izquierdo & José Manuel Galán & José Ignacio Santos, 2009. "Techniques to Understand Computer Simulations: Markov Chain Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-6.
    17. Li, Minlan & Liu, Yan-Ping & Han, Yanyan & Wang, Rui-Wu, 2022. "Environmental heterogeneity unifies the effect of spatial structure on the altruistic cooperation in game-theory paradigms," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    18. Laird, Robert A. & Goyal, Dipankar & Yazdani, Soroosh, 2013. "Geometry of ‘standoffs’ in lattice models of the spatial Prisoner’s Dilemma and Snowdrift games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3622-3633.
    19. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    20. Chen, Wei & Wu, Te & Li, Zhiwu & Wang, Long, 2016. "Friendship-based partner switching promotes cooperation in heterogeneous populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 192-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:469:y:2017:i:c:p:625-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.