IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v293y2017icp575-585.html
   My bibliography  Save this article

Fault detection for discrete-time linear systems based on descriptor observer approach

Author

Listed:
  • Du, Dongsheng

Abstract

This paper investigates the problem of actuator fault detection filter design for discrete-time linear systems with output disturbance. By using the descriptor observer method, an H∞ fault detection filter is designed to guarantee the residual system is admissible and satisfies the H∞ performance. By utilizing Lyapunov function approach, a sufficient condition for the admissible of the residual system is obtained in the form of linear matrix inequality (LMI). The desired fault detection filter can be designed by solving a set of LMIs. Finally, a numerical example is proposed to illustrate the effectiveness of the developed method.

Suggested Citation

  • Du, Dongsheng, 2017. "Fault detection for discrete-time linear systems based on descriptor observer approach," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 575-585.
  • Handle: RePEc:eee:apmaco:v:293:y:2017:i:c:p:575-585
    DOI: 10.1016/j.amc.2016.08.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316305550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.08.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhai, Ding & Lu, An-Yang & Li, Jing-Hao & Zhang, Qing-Ling, 2016. "Simultaneous fault detection and control for switched linear systems with mode-dependent average dwell-time," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 767-792.
    2. Song, Xinmin & Duan, Zhenhua & Park, Ju H., 2016. "Linear optimal estimation for discrete-time systems with measurement-delay and packet dropping," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 115-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Yanfang & Li, Junmin & Zhao, Ailiang, 2022. "Spatiotemporal fault detection, estimation and control for nonlinear reaction-diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    2. Li, Jian & Wu, Chun-Yu, 2017. "Finite-time fault detection filter design for discrete-time interconnected systems with average dwell time," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 259-270.
    3. Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
    4. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    5. Zhang, Zhi-Hui & Hao, Li-Ying & Guo, Mingjie, 2022. "Fault detection for uncertain nonlinear systems via recursive observer and tight threshold," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    6. Wang, Jiancheng & He, Shuping & Luan, Xiaoli & Liu, Fei, 2020. "Fuzzy fault detection of conic-type nonlinear systems within the finite frequency domain," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    7. Du, Dongsheng & Cocquempot, Vincent & Jiang, Bin, 2019. "Robust fault estimation observer design for switched systems with unknown input," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 70-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiao-Qi & Guo, Shun & Long, Yue & Zhong, Guang-Xin, 2022. "Simultaneous fault detection and control for discrete-time switched systems under relaxed persistent dwell time switching," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Zhou, Jianping & Park, Ju H. & Ma, Qian, 2016. "Non-fragile observer-based H∞ control for stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 69-83.
    3. Liu, Lei & Zhou, Qi & Liang, Hongjing & Wang, Lijie, 2017. "Stability and Stabilization of Nonlinear Switched Systems Under Average Dwell Time," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 77-94.
    4. Zhai, Ding & Lu, An-Yang & Dong, Jiuxiang & Zhang, Qing-Ling, 2016. "Asynchronous H∞ filtering for 2D discrete Markovian jump systems with sensor failure," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 60-79.
    5. Cui, Beibei & Song, Xinmin & Liu, Xiyu, 2019. "Unbiased steady minimum-variance estimation for systems with measurement-delay and unknown inputs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 379-391.
    6. Göksu, Gökhan & Başer, Ulviye, 2021. "Finite-time stability for switched linear systems by Jordan decomposition," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    7. Liu, Xuan & Zhai, Ding & He, Da-Kuo & Chang, Xiao-Heng, 2018. "Simultaneous fault detection and control for continuous-time Markovian jump systems with partially unknown transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 469-486.
    8. Zhai, Ding & Lu, An-Yang & Dong, Jiuxiang & Zhang, Qing-Ling, 2017. "Stability analysis and state feedback control of continuous-time T–S fuzzy systems via anew switched fuzzy Lyapunov function approach," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 586-599.
    9. Wu, Xifen & Bao, Haibo, 2023. "H∞ state estimation for multiplex networks with randomly occurring sensor saturations," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    10. Zeng, Deqiang & Zhang, Ruimei & Liu, Yajuan & Zhong, Shouming, 2017. "Sampled-data synchronization of chaotic Lur’e systems via input-delay-dependent-free-matrix zero equality approach," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 34-46.
    11. Li, Jian & Wu, Chun-Yu, 2017. "Finite-time fault detection filter design for discrete-time interconnected systems with average dwell time," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 259-270.
    12. Gao, Lijun & Wang, Zhenyue & Sun, Tao & Cao, Zhengbao, 2023. "Stability analysis for hybrid deterministic system under delay-dependent impulses uniting properties of edges," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    13. Shi, Chong-Xiao & Yang, Guang-Hong, 2018. "Robust consensus control for a class of multi-agent systems via distributed PID algorithm and weighted edge dynamics," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 73-88.
    14. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    15. Fu, Xiaoyu & Song, Xinmin & Liu, Xiyu & Zhang, Min, 2023. "Distributed state estimation with state equality constraints in the presence of packet dropping," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    16. Mahmoud, Magdi S. & Almutairi, Naif B., 2016. "Feedback fuzzy control for quantized networked systems with random delays," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 80-97.
    17. Meng, Xin & Zhai, Ding & Fu, Zhumu & Xie, Xiangpeng, 2020. "Adaptive fault tolerant control for a class of switched nonlinear systems with unknown control directions," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    18. Pan, Yingnan & Yang, Guang-Hong, 2019. "Event-based output tracking control for fuzzy networked control systems with network-induced delays," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 513-530.
    19. Gao, Rui & Zhai, Ding & Cheng, Jun, 2019. "Decentralized static output feedback sliding mode control for interconnected descriptor systems via linear sliding variable," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 185-198.
    20. Liu, Yanli & Wang, Runzhi & Hao, Li-Ying, 2022. "Adaptive TD control of full-state-constrained nonlinear stochastic switched systems," Applied Mathematics and Computation, Elsevier, vol. 427(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:293:y:2017:i:c:p:575-585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.