IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v446y2023ics0096300323000358.html
   My bibliography  Save this article

Improved results on reachable set synthesis of Markovian jump systems with time-varying delays: General asynchronous control approaches

Author

Listed:
  • Feng, Bo
  • Feng, Zhiguang
  • Li, Peng

Abstract

This paper investigates the reachable set synthesis (RSS) issue of Markovian jump systems (MJSs) with time-varying delays via various asynchronous controls. The goal is to devise appropriate asynchronous controllers to assure that the reachable set (RS) of the generated closed-loop dynamic system (CDS) is constrained in the specified region. Firstly, a hidden Markov model (HMM) is used to describe mismatch case among controller modes and system modes. Next, coupling problem of mode mismatch is solved by using an effective inequality condition, and the sufficient conditions for the existence of the asynchronous controllers by linear matrix inequalities (LMIs) are given. Based on the desired asynchronous controllers, the additional reachable set synthesis results of two related controls for the MJSs are obtained. Finally, two simulations are given to demonstrate the feasibility and superiority of the provided methods.

Suggested Citation

  • Feng, Bo & Feng, Zhiguang & Li, Peng, 2023. "Improved results on reachable set synthesis of Markovian jump systems with time-varying delays: General asynchronous control approaches," Applied Mathematics and Computation, Elsevier, vol. 446(C).
  • Handle: RePEc:eee:apmaco:v:446:y:2023:i:c:s0096300323000358
    DOI: 10.1016/j.amc.2023.127866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323000358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Guoliang, 2015. "Stochastic stabilization of singular systems with Markovian switchings," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 390-401.
    2. Wang, Guoliang, 2016. "Mode-independent control of singular Markovian jump systems: A stochastic optimization viewpoint," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 155-170.
    3. Wang, Guoliang & Li, Zhiqiang & Zhang, Qingling & Yang, Chunyu, 2017. "Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 377-393.
    4. Zhang, Liang & Feng, Zhiguang & Jiang, Zhengyi & Zhao, Ning & Yang, Yang, 2020. "Improved results on reachable set estimation of singular systems," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jianyu & Wang, Yingying & Yang, Songwei & Li, Jiaojiao & Qu, Hao, 2024. "A design of fuzzy sliding mode control for Markovian jumping system with different input matrices," Applied Mathematics and Computation, Elsevier, vol. 463(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwon, Nam Kyu & Park, In Seok & Park, PooGyeon, 2017. "H∞ control for singular Markovian jump systems with incomplete knowledge of transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 126-135.
    2. Lin, Xiangze & Zhang, Wanli & Huang, Shuaiting & Zheng, Enlai, 2020. "Finite-time stabilization of input-delay switched systems," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    3. Liao, Wei & Liang, Taotao & Wei, Xiaohui & Yin, Qiaozhi, 2022. "Probabilistic reach-Avoid problems in nondeterministic systems with time-Varying targets and obstacles," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    4. Wang, Guoliang & Li, Zhiqiang & Zhang, Qingling & Yang, Chunyu, 2017. "Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 377-393.
    5. Wang, Guoliang & Cai, Hongyang & Zhang, Qingling & Yang, Chunyu, 2017. "Stabilization of stochastic delay systems via a disordered controller," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 98-109.
    6. Fu, Lei & Ma, Yuechao, 2016. "Passive control for singular time-delay system with actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 181-193.
    7. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    8. Sakthivel, R. & Saravanakumar, T. & Kaviarasan, B. & Marshal Anthoni, S., 2016. "Dissipativity based repetitive control for switched stochastic dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 340-353.
    9. Harshavarthini, S. & Kwon, O.M. & Lee, S.M., 2022. "Uncertainty and disturbance estimator-based resilient tracking control design for fuzzy semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    10. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    11. Gao, Xianwen & He, Hangfeng & Qi, Wenhai, 2017. "Admissibility analysis for discrete-time singular Markov jump systems with asynchronous switching," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 431-441.
    12. Li, Jian & Wu, Chun-Yu, 2017. "Finite-time fault detection filter design for discrete-time interconnected systems with average dwell time," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 259-270.
    13. Xikui Liu & Wencong Li & Chenxin Yao & Yan Li, 2022. "Finite-Time Guaranteed Cost Control for Markovian Jump Systems with Time-Varying Delays," Mathematics, MDPI, vol. 10(12), pages 1-12, June.
    14. Zhao, Wenying & Ma, Yuechao & Chen, Aihong & Fu, Lei & Zhang, Yutong, 2019. "Robust sliding mode control for Markovian jump singular systems with randomly changing structure," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 81-96.
    15. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    16. Feng, Zhiguang & Zhang, Xinyue & Lam, James & Fan, Chenchen, 2023. "Estimation of reachable set for switched singular systems with time-varying delay and state jump," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    17. Wang, Guoliang & Zhu, Zhikang & Zhang, Yande, 2024. "Stabilization of continuous-time Markovian jump systems: A mode separation but optimization method," Applied Mathematics and Computation, Elsevier, vol. 472(C).
    18. Zhao, Yinghong & Ma, Yuechao, 2021. "Asynchronous H∞ control for hidden singular Markov jump systems with incomplete transition probabilities via state decomposition approach," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    19. Wenhai Qi & Yonggui Kao & Xianwen Gao, 2017. "Further results on finite-time stabilisation for stochastic Markovian jump systems with time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(14), pages 2967-2975, October.
    20. Tian, Yufeng & Wang, Yuzhong & Ren, Junchao, 2020. "Stability analysis and control design of singular Markovian jump systems via a parameter-dependent reciprocally convex matrix inequality," Applied Mathematics and Computation, Elsevier, vol. 386(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:446:y:2023:i:c:s0096300323000358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.