IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v481y2024ics0096300324004107.html
   My bibliography  Save this article

On exponential and L2-exponential stability of continuous-time delay-difference systems

Author

Listed:
  • Li, Zhao-Yan
  • Zhang, Qianqian
  • Zhou, Bin

Abstract

In this paper, the exponential stability (ES) and L2-exponential stability (L2-ES) of continuous-time delay-difference systems are studied. Firstly, the relationship between ES and L2-ES of the studied system is systematically presented. Secondly, a novel Lyapunov stability theorem is proposed to test both the ES and L2-ES with a guaranteed convergence rate of the system. Then, for a particular class of delay-difference systems with both point delays and distributed delays having exponential integral kernels, some stability criteria based on linear matrix inequalities (LMIs) are established by selecting suitable Lyapunov-Krasovskii functionals (LKFs) and using a delay decomposition technique. Finally, a numerical example is worked out to illustrate the effectiveness of the theoretical results.

Suggested Citation

  • Li, Zhao-Yan & Zhang, Qianqian & Zhou, Bin, 2024. "On exponential and L2-exponential stability of continuous-time delay-difference systems," Applied Mathematics and Computation, Elsevier, vol. 481(C).
  • Handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s0096300324004107
    DOI: 10.1016/j.amc.2024.128949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324004107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Zhiguang & Zhang, Xinyue & Lam, James & Fan, Chenchen, 2023. "Estimation of reachable set for switched singular systems with time-varying delay and state jump," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    2. Zhai, Zhengliang & Yan, Huaicheng & Chen, Shiming & Chang, Yufang & Zhou, Jing, 2024. "Novel stability criteria of generalized neural networks with time-varying delay based on the same augmented LKF and bounding technique," Applied Mathematics and Computation, Elsevier, vol. 460(C).
    3. Wang, Yibo & Hua, Changchun & Park, PooGyeon & Qian, Cheng, 2023. "Stability criteria for time-varying delay systems via an improved reciprocally convex inequality lemma," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    4. Zeng, Xu & Li, Chuandong & Huang, Tingwen & He, Xing, 2015. "Stability analysis of complex-valued impulsive systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 75-82.
    5. Peng, Dongxue & Li, Xiaodi & Rakkiyappan, R. & Ding, Yanhui, 2021. "Stabilization of stochastic delayed systems: Event-triggered impulsive control," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiguo Yan & Fangxu Su, 2022. "Mean-Square Strong Stability and Stabilization of Discrete-Time Markov Jump Systems with Multiplicative Noises," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    2. Liu, Haoliang & Zhang, Taixiang & Li, Xiaodi, 2021. "Event-triggered control for nonlinear systems with impulse effects," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Li, Huijuan & Li, Wuquan & Gu, Jianzhong, 2022. "Decentralized stabilization of large-scale stochastic nonlinear systems with time-varying powers," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    4. Wang, Pengfei & Zou, Wenqing & Su, Huan, 2019. "Stability of complex-valued impulsive stochastic functional differential equations on networks with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 338-354.
    5. Li, Xiaodi & Deng, Feiqi, 2017. "Razumikhin method for impulsive functional differential equations of neutral type," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 41-49.
    6. He, Xinyi & Wang, Yuhan & Li, Xiaodi, 2021. "Uncertain impulsive control for leader-following synchronization of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    7. Arunagirinathan, S. & Lee, T.H., 2024. "Generalized delay-dependent reciprocally convex inequality on stability for neural networks with time-varying delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 109-120.
    8. Li, Xiaodi & Shen, Jianhua & Rakkiyappan, R., 2018. "Persistent impulsive effects on stability of functional differential equations with finite or infinite delay," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 14-22.
    9. Kumar, Ankit & Das, Subir & Yadav, Vijay K. & Rajeev,, 2021. "Global quasi-synchronization of complex-valued recurrent neural networks with time-varying delay and interaction terms," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Shi, Yanchao & Cao, Jinde & Chen, Guanrong, 2017. "Exponential stability of complex-valued memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 222-234.
    11. Huang, Tao & Shao, Yiyu & Li, Liwei & Liu, Yajuan & Shen, Mouquan, 2024. "Guaranteed cost event-triggered H∞ control of uncertain linear system via output disturbance observer," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    12. Zhang, Lei & Song, Qiankun & Zhao, Zhenjiang, 2017. "Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 296-309.
    13. Yang, Ni & Gao, Ruiyi & Su, Huan, 2022. "Stability of multi-links complex-valued impulsive stochastic systems with Markovian switching and multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Lichao Feng & Qiaona Wang & Chunyan Zhang & Dianxuan Gong, 2022. "Polynomial Noises for Nonlinear Systems with Nonlinear Impulses and Time-Varying Delays," Mathematics, MDPI, vol. 10(9), pages 1-13, May.
    15. Feng, Zhiguang & Zhang, Xinyue & Liu, Jason J.R. & Jiang, Zhengyi, 2024. "A new method of reachable sets estimation for the nonlinear switched singular system with impulsive performance and time-delay," Applied Mathematics and Computation, Elsevier, vol. 481(C).
    16. Yujuan Tian & Yuhan Yin & Fei Wang & Kening Wang, 2022. "Impulsive Control of Complex-Valued Neural Networks with Mixed Time Delays and Uncertainties," Mathematics, MDPI, vol. 10(3), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s0096300324004107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.