IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921006779.html
   My bibliography  Save this article

Global quasi-synchronization of complex-valued recurrent neural networks with time-varying delay and interaction terms

Author

Listed:
  • Kumar, Ankit
  • Das, Subir
  • Yadav, Vijay K.
  • Rajeev,

Abstract

In this article, the global quasi-synchronization of complex-valued recurrent neural networks (CVRNNs) with time-varying delays and interaction terms has been investigated. It is based on the standard Lyapunov stability theory and matrix measure method employed with the nonlinear Lipschitz activation functions. A sufficient condition for global quasi-synchronization of the complex-valued recurrent neural network model is shown in an effective way through a proper description of Lyapunov-stability technique. This article provides quite a new result for the CVRNNs having time-varying delays and interaction terms. Finally, a numerical example is considered to show the viability and unwavering quality of our theoretical results under several conditions.

Suggested Citation

  • Kumar, Ankit & Das, Subir & Yadav, Vijay K. & Rajeev,, 2021. "Global quasi-synchronization of complex-valued recurrent neural networks with time-varying delay and interaction terms," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921006779
    DOI: 10.1016/j.chaos.2021.111323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921006779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao, Zhang & Xing-yuan, Wang & Peng-fei, Yan & Yu-jie, Sun, 2020. "Combination synchronization and stability analysis of time-varying complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Jun Li & Bing Li & Yuhua Xu & Wuneng Zhou & Jian'an Fang, 2012. "Impulsive Synchronization of Multilinks Delayed Coupled Complex Networks with Perturb Effects," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-11, November.
    3. Chen, Hao & Zhong, Shouming & Shao, Jinliang, 2015. "Exponential stability criterion for interval neural networks with discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 121-130.
    4. Zhu, Ruiyuan & Guo, Yingxin & Wang, Fei, 2020. "Quasi-synchronization of heterogeneous neural networks with distributed and proportional delays via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Wang, Zhen & Parastesh, Fatemeh & Rajagopal, Karthikeyan & Hamarash, Ibrahim Ismael & Hussain, Iqtadar, 2020. "Delay-induced synchronization in two coupled chaotic memristive Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Chien, Tsun-I & Liao, Teh-Lu, 2005. "Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 241-255.
    7. Zhang, Yanlin & Deng, Shengfu, 2019. "Finite-time projective synchronization of fractional-order complex-valued memristor-based neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 176-190.
    8. Zeng, Xu & Li, Chuandong & Huang, Tingwen & He, Xing, 2015. "Stability analysis of complex-valued impulsive systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 75-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isaac Chairez & Arthur Mukhamedov & Vladislav Prud & Olga Andrianova & Viktor Chertopolokhov, 2022. "Differential Neural Network-Based Nonparametric Identification of Eye Response to Enforced Head Motion," Mathematics, MDPI, vol. 10(6), pages 1-12, March.
    2. Xiong, Kailong & Yu, Juan & Hu, Cheng & Wen, Shiping & Kong, Fanchao, 2024. "Nonseparation analysis-based finite/fixed-time synchronization of fully complex-valued impulsive dynamical networks," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    3. Yaning Yu & Ziye Zhang, 2022. "State Estimation for Complex-Valued Inertial Neural Networks with Multiple Time Delays," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
    4. Kumar, Ankit & Das, Subir & Singh, Sunny & Rajeev,, 2023. "Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Shi, Lingna & Li, Jiarong & Jiang, Haijun & Wang, Jinling, 2023. "Quasi-synchronization of multi-layer delayed neural networks with parameter mismatches via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Sun, Wenjing & Tang, Ze & Feng, Jianwen & Park, Ju H., 2024. "Quasi-synchronization of heterogeneous neural networks with hybrid time delays via sampled-data saturating impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    2. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    3. Wang, Lingyu & Huang, Tingwen & Xiao, Qiang, 2018. "Global exponential synchronization of nonautonomous recurrent neural networks with time delays on time scales," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 263-275.
    4. Baluni, Sapna & Sehgal, Ishani & Yadav, Vijay K. & Das, Subir, 2024. "Exponential synchronization of a class of quaternion-valued neural network with time-varying delays: A Matrix Measure Approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Shang, Li-Jen & Shyu, Kuo-Kai, 2009. "A method for extracting chaotic signal from noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1120-1125.
    6. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    7. Gao, Tiegang & Chen, Zengqiang, 2008. "Image encryption based on a new total shuffling algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 213-220.
    8. Zaher, Ashraf A., 2009. "An improved chaos-based secure communication technique using a novel encryption function with an embedded cipher key," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2804-2814.
    9. Chien, Tsun-I & Hung, Yung-Ching & Liao, Teh-Lu, 2006. "A non-correlator-based digital communication system using interleaved chaotic differential peaks keying (I-CDPK) modulation and chaotic synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 965-977.
    10. He, Jin-Man & Pei, Li-Jun, 2023. "Function matrix projection synchronization for the multi-time delayed fractional order memristor-based neural networks with parameter uncertainty," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    11. Eisencraft, Marcio & Baccalá, Luiz Antonio, 2008. "The Cramer-Rao bound for initial conditions estimation of chaotic orbits," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 132-139.
    12. Rajagopal, Karthikeyan & Jafari, Sajad & Li, Chunbiao & Karthikeyan, Anitha & Duraisamy, Prakash, 2021. "Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    14. Sun, Yeong-Jeu, 2009. "A simple observer of the generalized Chen chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1641-1644.
    15. Banerjee, Santo, 2009. "Synchronization of time-delayed systems with chaotic modulation and cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 745-750.
    16. Mahmoud, Magdi S. & Almutairi, Naif B., 2016. "Feedback fuzzy control for quantized networked systems with random delays," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 80-97.
    17. Ge, Zheng-Ming & Lin, Guo-Hua, 2007. "The complete, lag and anticipated synchronization of a BLDCM chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 740-764.
    18. Li, Xiaodi & Shen, Jianhua & Rakkiyappan, R., 2018. "Persistent impulsive effects on stability of functional differential equations with finite or infinite delay," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 14-22.
    19. Sun, Wenjing & Tang, Ze & Feng, Jianwen & Park, Ju H., 2024. "Quasi-synchronization of heterogeneous neural networks with hybrid time delays via sampled-data saturating impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Sun, Yeong-Jeu, 2009. "Robust tracking control of uncertain Duffing–Holmes control systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1282-1287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921006779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.