IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v103y2014icp39-59.html
   My bibliography  Save this article

Basins of attraction for several optimal fourth order methods for multiple roots

Author

Listed:
  • Neta, Beny
  • Chun, Changbum

Abstract

There are very few optimal fourth order methods for solving nonlinear algebraic equations having roots of multiplicity m. Here we compare five such methods, two of which require the evaluation of the (m−1)st root. The methods are usually compared by evaluating the computational efficiency and the efficiency index. In this paper all the methods have the same efficiency, since they are of the same order and use the same information. Frequently, comparisons of the various schemes are based on the number of iterations required for convergence, number of function evaluations, and/or amount of CPU time. If a particular algorithm does not converge or if it converges to a different solution, then that particular algorithm is thought to be inferior to the others. The primary flaw in this type of comparison is that the starting point represents only one of an infinite number of other choices. Here we use the basin of attraction idea to recommend the best fourth order method. The basin of attraction is a method to visually comprehend how an algorithm behaves as a function of the various starting points.

Suggested Citation

  • Neta, Beny & Chun, Changbum, 2014. "Basins of attraction for several optimal fourth order methods for multiple roots," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 103(C), pages 39-59.
  • Handle: RePEc:eee:matcom:v:103:y:2014:i:c:p:39-59
    DOI: 10.1016/j.matcom.2014.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475414000688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2014.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun, Changbum & Neta, Beny, 2015. "Basins of attraction for several third order methods to find multiple roots of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 129-137.
    2. Chun, Changbum & Neta, Beny, 2015. "An analysis of a family of Maheshwari-based optimal eighth order methods," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 294-307.
    3. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2017. "A family of optimal quartic-order multiple-zero finders with a weight function of the principal kth root of a derivative-to-derivative ratio and their basins of attraction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 1-21.
    4. Anuradha Singh & J. P. Jaiswal, 2014. "An Efficient Family of Optimal Eighth-Order Iterative Methods for Solving Nonlinear Equations and Its Dynamics," Journal of Mathematics, Hindawi, vol. 2014, pages 1-14, September.
    5. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2015. "A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 387-400.
    6. Min-Young Lee & Young Ik Kim & Beny Neta, 2019. "A Generic Family of Optimal Sixteenth-Order Multiple-Root Finders and Their Dynamics Underlying Purely Imaginary Extraneous Fixed Points," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    7. Young Hee Geum & Young Ik Kim & Beny Neta, 2018. "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, MDPI, vol. 7(1), pages 1-32, December.
    8. Petković, I. & Herceg, Ð., 2017. "Symbolic computation and computer graphics as tools for developing and studying new root-finding methods," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 95-113.
    9. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2015. "On developing a higher-order family of double-Newton methods with a bivariate weighting function," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 277-290.
    10. Chun, Changbum & Neta, Beny, 2015. "Comparing the basins of attraction for Kanwar–Bhatia–Kansal family to the best fourth order method," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 277-292.
    11. Behl, Ramandeep & Cordero, Alicia & Motsa, S.S. & Torregrosa, Juan R., 2015. "On developing fourth-order optimal families of methods for multiple roots and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 520-532.
    12. Sharifi, Somayeh & Salimi, Mehdi & Siegmund, Stefan & Lotfi, Taher, 2016. "A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 69-90.
    13. Chun, Changbum & Neta, Beny, 2016. "An analysis of a Khattri’s 4th order family of methods," Applied Mathematics and Computation, Elsevier, vol. 279(C), pages 198-207.
    14. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2016. "A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 120-140.
    15. Chun, Changbum & Neta, Beny, 2015. "Basins of attraction for Zhou–Chen–Song fourth order family of methods for multiple roots," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 74-91.
    16. Chun, Changbum & Neta, Beny, 2016. "Comparison of several families of optimal eighth order methods," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 762-773.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:103:y:2014:i:c:p:39-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.