IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v315y2017icp224-245.html
   My bibliography  Save this article

Higher-order derivative-free families of Chebyshev–Halley type methods with or without memory for solving nonlinear equations

Author

Listed:
  • Argyros, Ioannis K.
  • Kansal, Munish
  • Kanwar, Vinay
  • Bajaj, Sugandha

Abstract

In this paper, we present two new derivative-free families of Chebyshev–Halley type methods for solving nonlinear equations numerically. Both families require only three and four functional evaluations to achieve optimal fourth and eighth orders of convergence. Furthermore, accelerations of convergence speed are attained by suitable variation of a free parameter in each iterative step. The self-accelerating parameter is estimated from the current and previous iteration. This self-accelerating parameter is calculated using Newton’s interpolation polynomial of third and fourth degrees. Consequently, the R-orders of convergence are increased from 4 to 6 and 8 to 12, respectively, without any additional functional evaluation. The results require high-order derivatives reaching up to the eighth derivative. That is why we also present an alternative approach using only the first or at most the fourth derivative. We also obtain the radius of convergence and computable error bounds on the distances involved. Numerical experiments and the comparison of the existing robust methods are included to confirm the theoretical results and high computational efficiency. In particular, we consider a concrete variety of real life problems coming from different disciplines e.g., Kepler’s equation of motion, Planck’s radiation law problem, fractional conversion in a chemical reactor, the trajectory of an electron in the air gap between two parallel plates, Van der Waal’s equation which explains the behavior of a real gas by introducing in the ideal gas equations, in order to check the applicability and effectiveness of our proposed methods.

Suggested Citation

  • Argyros, Ioannis K. & Kansal, Munish & Kanwar, Vinay & Bajaj, Sugandha, 2017. "Higher-order derivative-free families of Chebyshev–Halley type methods with or without memory for solving nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 224-245.
  • Handle: RePEc:eee:apmaco:v:315:y:2017:i:c:p:224-245
    DOI: 10.1016/j.amc.2017.07.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031730512X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.07.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Argyros, Ioannis K. & Magreñán, Á. Alberto, 2015. "On the convergence of an optimal fourth-order family of methods and its dynamics," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 336-346.
    2. Andreu, Carlos & Cambil, Noelia & Cordero, Alicia & Torregrosa, Juan R., 2014. "A class of optimal eighth-order derivative-free methods for solving the Danchick–Gauss problem," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 237-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Li & Xiaomeng Wang & Kalyanasundaram Madhu, 2019. "Higher-Order Derivative-Free Iterative Methods for Solving Nonlinear Equations and Their Basins of Attraction," Mathematics, MDPI, vol. 7(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2016. "A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 120-140.
    2. Young Hee Geum & Young Ik Kim & Beny Neta, 2018. "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, MDPI, vol. 7(1), pages 1-32, December.
    3. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2015. "A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 387-400.
    4. Petković, I. & Herceg, Ð., 2017. "Symbolic computation and computer graphics as tools for developing and studying new root-finding methods," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 95-113.
    5. Ioannis K. Argyros & Ángel Alberto Magreñán & Lara Orcos & Íñigo Sarría, 2019. "Unified Local Convergence for Newton’s Method and Uniqueness of the Solution of Equations under Generalized Conditions in a Banach Space," Mathematics, MDPI, vol. 7(5), pages 1-13, May.
    6. Ramandeep Behl & Ioannis K. Argyros, 2020. "Local Convergence for Multi-Step High Order Solvers under Weak Conditions," Mathematics, MDPI, vol. 8(2), pages 1-14, February.
    7. Behl, Ramandeep & Cordero, Alicia & Motsa, Sandile S. & Torregrosa, Juan R., 2015. "Construction of fourth-order optimal families of iterative methods and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 89-101.
    8. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros & Ángel Alberto Magreñán, 2019. "On a Bi-Parametric Family of Fourth Order Composite Newton–Jarratt Methods for Nonlinear Systems," Mathematics, MDPI, vol. 7(6), pages 1-27, May.
    9. Behl, Ramandeep & Cordero, Alicia & Motsa, S.S. & Torregrosa, Juan R., 2015. "On developing fourth-order optimal families of methods for multiple roots and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 520-532.
    10. García Calcines, José M. & Gutiérrez, José M. & Hernández Paricio, Luis J. & Rivas Rodríguez, M. Teresa, 2015. "Graphical representations for the homogeneous bivariate Newton’s method," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 988-1006.
    11. Lee, Min-Young & Ik Kim, Young & Alberto Magreñán, Á., 2017. "On the dynamics of a triparametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-to function ratio," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 564-590.
    12. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2015. "On developing a higher-order family of double-Newton methods with a bivariate weighting function," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 277-290.
    13. Campos, Beatriz & Cordero, Alicia & Torregrosa, Juan R. & Vindel, Pura, 2016. "Dynamics of a multipoint variant of Chebyshev–Halley’s family," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 195-208.
    14. Behl, Ramandeep & Cordero, Alicia & Motsa, Sandile S. & Torregrosa, Juan R., 2017. "Stable high-order iterative methods for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 70-88.
    15. Min-Young Lee & Young Ik Kim & Beny Neta, 2019. "A Generic Family of Optimal Sixteenth-Order Multiple-Root Finders and Their Dynamics Underlying Purely Imaginary Extraneous Fixed Points," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    16. Chun, Changbum & Neta, Beny, 2015. "Basins of attraction for several third order methods to find multiple roots of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 129-137.
    17. Young Hee Geum & Young Ik Kim, 2020. "Computational Bifurcations Occurring on Red Fixed Components in the λ -Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    18. Geum, Young Hee & Kim, Young Ik & Magreñán, Á. Alberto, 2016. "A biparametric extension of King’s fourth-order methods and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 254-275.
    19. Danchick, Roy, 2015. "Simplified existence and uniqueness conditions for the zeros and the concavity of the F and G functions of improved Gauss orbit determination from two position vectors," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 279-287.
    20. Chun, Changbum & Neta, Beny, 2016. "Comparison of several families of optimal eighth order methods," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 762-773.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:315:y:2017:i:c:p:224-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.