IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v277y2016icp142-153.html
   My bibliography  Save this article

Spectral properties of geometric–arithmetic index

Author

Listed:
  • Rodríguez, José M.
  • Sigarreta, José M.

Abstract

The concept of geometric–arithmetic index was introduced in the chemical graph theory recently, but it has shown to be useful. One of the main aims of algebraic graph theory is to determine how, or whether, properties of graphs are reflected in the algebraic properties of some matrices. The aim of this paper is to study the geometric–arithmetic index GA1 from an algebraic viewpoint. Since this index is related to the degree of the vertices of the graph, our main tool will be an appropriate matrix that is a modification of the classical adjacency matrix involving the degrees of the vertices. Moreover, using this matrix, we define a GA Laplacian matrix which determines the geometric–arithmetic index of a graph and satisfies properties similar to the ones of the classical Laplacian matrix.

Suggested Citation

  • Rodríguez, José M. & Sigarreta, José M., 2016. "Spectral properties of geometric–arithmetic index," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 142-153.
  • Handle: RePEc:eee:apmaco:v:277:y:2016:i:c:p:142-153
    DOI: 10.1016/j.amc.2015.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315300345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Das, Kinkar Ch. & Mojallal, Seyed Ahmad, 2016. "Extremal Laplacian energy of threshold graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 267-280.
    2. Shi, Yongtang, 2015. "Note on two generalizations of the Randić index," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1019-1025.
    3. Renqian, Suonan & Ge, Yunpeng & Huo, Bofeng & Ji, Shengjin & Diao, Qiangqiang, 2015. "On the tree with diameter 4 and maximal energy," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 364-374.
    4. Das, Kinkar Ch. & Mojallal, Seyed Ahmad & Gutman, Ivan, 2016. "On energy and Laplacian energy of bipartite graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 759-766.
    5. Li, Xueliang & Qin, Zhongmei & Wei, Meiqin & Gutman, Ivan & Dehmer, Matthias, 2015. "Novel inequalities for generalized graph entropies – Graph energies and topological indices," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 470-479.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vujošević, Saša & Popivoda, Goran & Kovijanić Vukićević, Žana & Furtula, Boris & Škrekovski, Riste, 2021. "Arithmetic–geometric index and its relations with geometric–arithmetic index," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    2. Shao, Yanling & Gao, Yubin, 2019. "The maximal geometric-arithmetic energy of trees with at most two branched vertices," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    3. Cui, Qing & Zhong, Lingping, 2017. "The general Randić index of trees with given number of pendent vertices," Applied Mathematics and Computation, Elsevier, vol. 302(C), pages 111-121.
    4. Liu, Chang & Pan, Yingui & Li, Jianping, 2021. "On the geometric-arithmetic Estrada index of graphs," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    5. Milovanović, E.I. & Milovanović, I.Ž. & Matejić, M.M., 2018. "Remark on spectral study of the geometric–arithmetic index and some generalizations," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 206-213.
    6. Mahdi Sohrabi-Haghighat & Mohammadreza Rostami, 2017. "The minimum value of geometric-arithmetic index of graphs with minimum degree 2," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 218-232, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Kinkar Ch. & Mojallal, Seyed Ahmad, 2016. "Extremal Laplacian energy of threshold graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 267-280.
    2. Das, Kinkar Ch. & Mojallal, Seyed Ahmad & Gutman, Ivan, 2016. "On energy and Laplacian energy of bipartite graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 759-766.
    3. Li, Hong-Hai & Wu, Qian-Qian & Gutman, Ivan, 2016. "On ordering of complements of graphs with respect to matching numbers," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 167-174.
    4. Yan, Xiaohe & Gu, Chenghong & Li, Furong & Xiang, Yue, 2018. "Network pricing for customer-operated energy storage in distribution networks," Applied Energy, Elsevier, vol. 212(C), pages 283-292.
    5. Hua, Hongbo & Das, Kinkar Ch., 2016. "On the Wiener polarity index of graphs," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 162-167.
    6. Su, Guifu & Tu, Jianhua & Das, Kinkar Ch., 2015. "Graphs with fixed number of pendent vertices and minimal Zeroth-order general Randić index," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 705-710.
    7. Du, Zhibin, 2017. "Further results regarding the sum of domination number and average eccentricity," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 299-309.
    8. Ali, Akbar & Raza, Zahid & Bhatti, Akhlaq Ahmad, 2016. "Bond incident degree (BID) indices of polyomino chains: A unified approach," Applied Mathematics and Computation, Elsevier, vol. 287, pages 28-37.
    9. Shin, Kong Joo & Managi, Shunsuke, 2017. "Liberalization of a retail electricity market: Consumer satisfaction and household switching behavior in Japan," Energy Policy, Elsevier, vol. 110(C), pages 675-685.
    10. Gersema, Gerke & Wozabal, David, 2017. "An equilibrium pricing model for wind power futures," Energy Economics, Elsevier, vol. 65(C), pages 64-74.
    11. Wang, Ligong & Wang, Qi & Huo, Bofeng, 2016. "Integral trees with diameter four," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 53-64.
    12. Li, Fengwei & Ye, Qingfang & Sun, Yuefang, 2017. "On edge-rupture degree of graphs," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 282-293.
    13. Ma, Yuede & Cao, Shujuan & Shi, Yongtang & Dehmer, Matthias & Xia, Chengyi, 2019. "Nordhaus–Gaddum type results for graph irregularities," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 268-272.
    14. Cui, Qing & Zhong, Lingping, 2017. "The general Randić index of trees with given number of pendent vertices," Applied Mathematics and Computation, Elsevier, vol. 302(C), pages 111-121.
    15. Milovanović, Igor & Milovanović, Emina & Gutman, Ivan, 2016. "Upper bounds for some graph energies," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 435-443.
    16. Knor, Martin & Škrekovski, Riste & Tepeh, Aleksandra, 2016. "Digraphs with large maximum Wiener index," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 260-267.
    17. Das, Kinkar Ch. & Mojallal, Seyed Ahmad & Gutman, Ivan, 2015. "On Laplacian energy in terms of graph invariants," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 83-92.
    18. Nadeem, Muhammad Faisal & Zafar, Sohail & Zahid, Zohaib, 2016. "On topological properties of the line graphs of subdivision graphs of certain nanostructures," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 125-130.
    19. Fei, Junqi & Tu, Jianhua, 2018. "Complete characterization of bicyclic graphs with the maximum and second-maximum degree Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 118-124.
    20. Ma, Gang & Bian, Qiuju & Wang, Jianfeng, 2019. "The weighted vertex PI index of (n,m)-graphs with given diameter," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 329-337.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:277:y:2016:i:c:p:142-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.