IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v330y2018icp118-124.html
   My bibliography  Save this article

Complete characterization of bicyclic graphs with the maximum and second-maximum degree Kirchhoff index

Author

Listed:
  • Fei, Junqi
  • Tu, Jianhua

Abstract

The degree Kirchhoff index (or multiplicative degree Kirchhoff index) of a connected simple graph G is defined as S′(G)=∑{u,v}⊆V(G)dG(u)dG(v)RG(u,v), where dG(u) is the degree of a vertex u in G and RG(u, v) is the resistance distance between the vertices u and v. In this paper, we completely characterize the bicyclic graphs of order n ≥ 6 having the maximum degree Kirchhoff index. Moreover, the bicyclic graphs of order n ≥ 7 with the second-maximum degree Kirchhoff index have also been determined.

Suggested Citation

  • Fei, Junqi & Tu, Jianhua, 2018. "Complete characterization of bicyclic graphs with the maximum and second-maximum degree Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 118-124.
  • Handle: RePEc:eee:apmaco:v:330:y:2018:i:c:p:118-124
    DOI: 10.1016/j.amc.2018.02.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318301279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.02.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Jing & Li, Shuchao & Li, Xuechao, 2016. "The normalized Laplacian, degree-Kirchhoff index and spanning trees of the linear polyomino chains," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 324-334.
    2. Qi, Xuli & Zhou, Bo & Du, Zhibin, 2016. "The Kirchhoff indices and the matching numbers of unicyclic graphs," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 464-480.
    3. Liu, Jia-Bao & Pan, Xiang-Feng, 2016. "Minimizing Kirchhoff index among graphs with a given vertex bipartiteness," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 84-88.
    4. He, Weihua & Li, Hao & Xiao, Shuofa, 2017. "On the minimum Kirchhoff index of graphs with a given vertex k-partiteness and edge k-partiteness," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 313-318.
    5. Shi, Yongtang, 2015. "Note on two generalizations of the Randić index," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1019-1025.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sardar, Muhammad Shoaib & Pan, Xiang-Feng & Xu, Si-Ao, 2020. "Computation of resistance distance and Kirchhoff index of the two classes of silicate networks," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    2. Huang, Guixian & He, Weihua & Tan, Yuanyao, 2019. "Theoretical and computational methods to minimize Kirchhoff index of graphs with a given edge k-partiteness," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 348-357.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Guixian & He, Weihua & Tan, Yuanyao, 2019. "Theoretical and computational methods to minimize Kirchhoff index of graphs with a given edge k-partiteness," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 348-357.
    2. Yang, Yujun & Cao, Yuliang & Yao, Haiyuan & Li, Jing, 2018. "Solution to a conjecture on a Nordhaus–Gaddum type result for the Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 241-249.
    3. Liu, Jia-Bao & Zhao, Jing & Cai, Zheng-Qun, 2020. "On the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. He, Weihua & Li, Hao & Xiao, Shuofa, 2017. "On the minimum Kirchhoff index of graphs with a given vertex k-partiteness and edge k-partiteness," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 313-318.
    5. Cui, Qing & Zhong, Lingping, 2017. "The general Randić index of trees with given number of pendent vertices," Applied Mathematics and Computation, Elsevier, vol. 302(C), pages 111-121.
    6. Hong, Yunchao & Zhu, Zhongxun & Luo, Amu, 2018. "Some transformations on multiplicative eccentricity resistance-distance and their applications," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 75-85.
    7. Hua, Hongbo & Das, Kinkar Ch., 2016. "On the Wiener polarity index of graphs," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 162-167.
    8. Su, Guifu & Tu, Jianhua & Das, Kinkar Ch., 2015. "Graphs with fixed number of pendent vertices and minimal Zeroth-order general Randić index," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 705-710.
    9. Shuchao Li & Licheng Zhang & Minjie Zhang, 2019. "On the extremal cacti of given parameters with respect to the difference of zagreb indices," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 421-442, August.
    10. Du, Zhibin, 2017. "Further results regarding the sum of domination number and average eccentricity," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 299-309.
    11. Faxu Li & Hui Xu & Liang Wei & Defang Wang, 2023. "RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-13, January.
    12. Ali, Akbar & Raza, Zahid & Bhatti, Akhlaq Ahmad, 2016. "Bond incident degree (BID) indices of polyomino chains: A unified approach," Applied Mathematics and Computation, Elsevier, vol. 287, pages 28-37.
    13. Jia-Bao Liu & Muhammad Kashif Shafiq & Haidar Ali & Asim Naseem & Nayab Maryam & Syed Sheraz Asghar, 2019. "Topological Indices of m th Chain Silicate Graphs," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    14. Ma, Gang & Bian, Qiuju & Wang, Jianfeng, 2019. "The weighted vertex PI index of (n,m)-graphs with given diameter," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 329-337.
    15. Milovanović, E.I. & Milovanović, I.Ž. & Dolićanin, E.Ć. & Glogić, E., 2016. "A note on the first reformulated Zagreb index," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 16-20.
    16. Yu, Guihai & Qu, Hui, 2015. "Hermitian Laplacian matrix and positive of mixed graphs," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 70-76.
    17. Wenyu Shi & Qiang Tang, 2023. "RETRACTED ARTICLE: Cost-optimized data placement strategy for social network with security awareness in edge-cloud computing environment," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-15, January.
    18. Jia-Bao Liu & S. N. Daoud, 2019. "Number of Spanning Trees in the Sequence of Some Graphs," Complexity, Hindawi, vol. 2019, pages 1-22, March.
    19. Borovićanin, Bojana & Furtula, Boris, 2016. "On extremal Zagreb indices of trees with given domination number," Applied Mathematics and Computation, Elsevier, vol. 279(C), pages 208-218.
    20. Li Zhang & Jing Zhao & Jia-Bao Liu & Salama Nagy Daoud, 2019. "Resistance Distance in the Double Corona Based on R -Graph," Mathematics, MDPI, vol. 7(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:330:y:2018:i:c:p:118-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.