IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v391y2021ics0096300320306597.html
   My bibliography  Save this article

Arithmetic–geometric index and its relations with geometric–arithmetic index

Author

Listed:
  • Vujošević, Saša
  • Popivoda, Goran
  • Kovijanić Vukićević, Žana
  • Furtula, Boris
  • Škrekovski, Riste

Abstract

The arithmetic–geometric index (AG(G)) was recently introduced as a modification of the well-known geometric–arithmetic index (GA(G)). This paper reports results on searching for extremal AG-graphs for various classes of simple graphs. Additionally, relations between these two indices are elaborated. Results on combinations AG+GA,AG−GA,AG · GA, and AG/GA are given. The paper is concluded with four conjectures that have been derived based on computer investigations.

Suggested Citation

  • Vujošević, Saša & Popivoda, Goran & Kovijanić Vukićević, Žana & Furtula, Boris & Škrekovski, Riste, 2021. "Arithmetic–geometric index and its relations with geometric–arithmetic index," Applied Mathematics and Computation, Elsevier, vol. 391(C).
  • Handle: RePEc:eee:apmaco:v:391:y:2021:i:c:s0096300320306597
    DOI: 10.1016/j.amc.2020.125706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320306597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. S. Shigehalli & Rachanna Kanabur, 2016. "Computation of New Degree-Based Topological Indices of Graphene," Journal of Mathematics, Hindawi, vol. 2016, pages 1-6, September.
    2. Rodríguez, José M. & Sigarreta, José M., 2016. "Spectral properties of geometric–arithmetic index," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 142-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Wei & Gao, Yubin, 2024. "The extremal trees for exponential vertex-degree-based topological indices," Applied Mathematics and Computation, Elsevier, vol. 472(C).
    2. Mondal, Sourav & Das, Kinkar Chandra, 2024. "Complete solution to open problems on exponential augmented Zagreb index of chemical trees," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    3. Du, Jianwei & Sun, Xiaoling, 2024. "On bond incident degree index of chemical trees with a fixed order and a fixed number of leaves," Applied Mathematics and Computation, Elsevier, vol. 464(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdi Sohrabi-Haghighat & Mohammadreza Rostami, 2017. "The minimum value of geometric-arithmetic index of graphs with minimum degree 2," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 218-232, July.
    2. Sourav Mondal & Nilanjan De & Anita Pal, 2019. "On Some New Neighborhood Degree-Based Indices for Some Oxide and Silicate Networks," J, MDPI, vol. 2(3), pages 1-26, August.
    3. Milovanović, E.I. & Milovanović, I.Ž. & Matejić, M.M., 2018. "Remark on spectral study of the geometric–arithmetic index and some generalizations," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 206-213.
    4. Cui, Qing & Zhong, Lingping, 2017. "The general Randić index of trees with given number of pendent vertices," Applied Mathematics and Computation, Elsevier, vol. 302(C), pages 111-121.
    5. Shao, Yanling & Gao, Yubin, 2019. "The maximal geometric-arithmetic energy of trees with at most two branched vertices," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    6. Liu, Chang & Pan, Yingui & Li, Jianping, 2021. "On the geometric-arithmetic Estrada index of graphs," Applied Mathematics and Computation, Elsevier, vol. 391(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:391:y:2021:i:c:s0096300320306597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.