IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i1p25-30.html
   My bibliography  Save this article

Extreme shock models: An alternative perspective

Author

Listed:
  • Cirillo, Pasquale
  • Hüsler, Jürg

Abstract

Extreme shock models have been introduced in Gut and Hüsler (1999) to study systems that at random times are subject to a shock of random magnitude. These systems break down when the shock overcomes a given resistance level. In this paper we propose an alternative approach to extreme shock models using reinforced urn processes. As a consequence of this we are able to look at the same problem under a Bayesian nonparametric perspective, providing the predictive distribution of systems' defaults.

Suggested Citation

  • Cirillo, Pasquale & Hüsler, Jürg, 2011. "Extreme shock models: An alternative perspective," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 25-30, January.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:1:p:25-30
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00264-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gut, Allan & Hüsler, Jürg, 2005. "Realistic variation of shock models," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 187-204, September.
    2. Cirillo, Pasquale & Hüsler, Jürg, 2009. "An urn approach to generalized extreme shock models," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 969-976, April.
    3. Muliere, Pietro & Secchi, Piercesare & G. Walker, Stephen, 2003. "Reinforced random processes in continuous time," Stochastic Processes and their Applications, Elsevier, vol. 104(1), pages 117-130, March.
    4. Muliere, P. & Secchi, P. & Walker, S. G., 2000. "Urn schemes and reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 88(1), pages 59-78, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eryilmaz, Serkan & Kan, Cihangir, 2019. "Reliability and optimal replacement policy for an extreme shock model with a change point," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    2. repec:bpj:demode:v:6:y:2018:i:1:p:131-138:n:8 is not listed on IDEAS
    3. Wang, Xiaoyue & Zhao, Xian & Wang, Siqi & Sun, Leping, 2020. "Reliability and maintenance for performance-balanced systems operating in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Yang, Shunkun & Shao, Qi & Bian, Chong, 2022. "Reliability analysis of ensemble fault tolerance for soft error mitigation against complex radiation effect," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Meango, Toualith Jean-Marc & Ouali, Mohamed-Salah, 2020. "Failure interaction model based on extreme shock and Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    6. Fierro, Raúl & Leiva, Víctor & Maidana, Jean Paul, 2018. "Cumulative damage and times of occurrence for a multicomponent system: A discrete time approach," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 323-333.
    7. Hu, Zebin & Hu, Linmin & Wu, Shaomin & Yu, Xiaoyun, 2024. "Reliability assessment of discrete-time k/n(G) retrial system based on different failure types and the δ-shock model," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Cai, Kui, 2018. "A multi-state shock model with mutative failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 1-11.
    9. Eryilmaz, Serkan, 2015. "Assessment of a multi-state system under a shock model," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 1-8.
    10. Peluso, Stefano & Mira, Antonietta & Muliere, Pietro, 2015. "Reinforced urn processes for credit risk models," Journal of Econometrics, Elsevier, vol. 184(1), pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pasquale Cirillo & Jürg Hüsler & Pietro Muliere, 2013. "Alarm Systems and Catastrophes from a Diverse Point of View," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 821-839, December.
    2. Andrea Arfè & Stefano Peluso & Pietro Muliere, 2021. "The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 1-15, April.
    3. Souto Arias, Luis A. & Cirillo, Pasquale, 2021. "Joint and survivor annuity valuation with a bivariate reinforced urn process," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 174-189.
    4. Muliere, Pietro & Secchi, Piercesare & Walker, Stephen, 2005. "Partially exchangeable processes indexed by the vertices of a k-tree constructed via reinforcement," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 661-677, April.
    5. Dan Cheng & Pasquale Cirillo, 2019. "An Urn-Based Nonparametric Modeling of the Dependence between PD and LGD with an Application to Mortgages," Risks, MDPI, vol. 7(3), pages 1-21, July.
    6. Paolo Bulla & Pietro Muliere, 2007. "Bayesian Nonparametric Estimation for Reinforced Markov Renewal Processes," Statistical Inference for Stochastic Processes, Springer, vol. 10(3), pages 283-303, October.
    7. Peluso, Stefano & Mira, Antonietta & Muliere, Pietro, 2015. "Reinforced urn processes for credit risk models," Journal of Econometrics, Elsevier, vol. 184(1), pages 1-12.
    8. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
    9. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Finkelstein, Maxim & Marais, Francois, 2010. "On terminating Poisson processes in some shock models," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 874-879.
    11. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On Properties of the Phase-type Mixed Poisson Process and its Applications to Reliability Shock Modeling," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2933-2960, December.
    12. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2018. "Constructing a Markov process for modelling a reliability system under multiple failures and replacements," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 34-47.
    13. Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
    14. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Mission abort policy balancing the uncompleted mission penalty and system loss risk," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 194-201.
    15. John J. McCall, 2004. "Induction: From Kolmogorov and Solomonoff to De Finetti and Back to Kolmogorov," Metroeconomica, Wiley Blackwell, vol. 55(2‐3), pages 195-218, May.
    16. Stefano Peluso & Antonietta Mira & Pietro Muliere & Alessandro Lomi, 2016. "International Trade: a Reinforced Urn Network Model," Papers 1601.03067, arXiv.org.
    17. Ranjkesh, Somayeh Hamed & Hamadani, Ali Zeinal & Mahmoodi, Safieh, 2019. "A new cumulative shock model with damage and inter-arrival time dependency," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    18. Cirillo, Pasquale & Hüsler, Jürg, 2009. "An urn approach to generalized extreme shock models," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 969-976, April.
    19. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
    20. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zong, 2020. "Optimal mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:1:p:25-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.