IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v268y2015icp1038-1054.html
   My bibliography  Save this article

Finite-time stochastic input-to-state stability of switched stochastic nonlinear systems

Author

Listed:
  • Zhao, Ping
  • Feng, Wei
  • Zhao, Yan
  • Kang, Yu

Abstract

In this paper, the problems of finite-time globally asymptotical stability in probability (FGSP) and finite-time stochastic input-to-state stability (FSISS) for switched stochastic nonlinear (SSNL) systems are investigated. To solve these problems elegantly, some new definitions on FGSP and FSISS are presented in the form of generalized KL (GKL) function, and some lemmas about GKL functions and their properties are proved. Based on that, some sufficient conditions are provided firstly for nonswitched stochastic nonlinear (nSSNL) systems, which will make the corresponding study on SSNL systems easier. Then, overcoming the difficulties coming with the appearance of switching, some sufficient conditions on FGSP and FSISS are given for SSNL systems. Moreover, based on the concept of average dwell-time, a sufficient condition for FSISS of SSNL systems is also provided. Finally, some simulation examples are given to demonstrate the effectiveness of our results.

Suggested Citation

  • Zhao, Ping & Feng, Wei & Zhao, Yan & Kang, Yu, 2015. "Finite-time stochastic input-to-state stability of switched stochastic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1038-1054.
  • Handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:1038-1054
    DOI: 10.1016/j.amc.2015.06.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315008565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.06.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Qingyu & Jia, Xiaolong & Liu, Honghai, 2016. "Finite-time stabilization of a class of cascade nonlinear switched systems under state-dependent switching," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 172-180.
    2. Zhang, Meng & Zhu, Quanxin, 2022. "Finite-time input-to-state stability of switched stochastic time-varying nonlinear systems with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Wang, Yijing & Zou, Yanchao & Zuo, Zhiqiang & Li, Hongchao, 2016. "Finite-time stabilization of switched nonlinear systems with partial unstable modes," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 172-181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. K. Boukas, 2004. "Nonfragile Controller Design for Linear Markovian Jumping Parameters Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 241-255, August.
    2. Li, Yuyuan & Lu, Jianqiu & Kou, Chunhai & Mao, Xuerong & Pan, Jiafeng, 2018. "Robust discrete-state-feedback stabilization of hybrid stochastic systems with time-varying delay based on Razumikhin technique," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 152-161.
    3. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    4. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    5. Rathinasamy, Anandaraman & Nair, Priya, 2018. "Asymptotic mean-square stability of weak second-order balanced stochastic Runge–Kutta methods for multi-dimensional Itô stochastic differential systems," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 276-303.
    6. Xi, Fubao, 2004. "Stability of a random diffusion with nonlinear drift," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 273-286, July.
    7. Li, Bing, 2017. "A note on stability of hybrid stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 45-57.
    8. Guo, Beibei & Xiao, Yu, 2024. "Synchronization of multi-link and multi-delayed inertial neural networks with Markov jump via aperiodically intermittent adaptive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 435-453.
    9. Liang, Tiantian & Shi, Shengli & Ma, Yuechao, 2023. "Asynchronous sliding mode control of continuous-time singular markov jump systems with time-varying delay under event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    10. Ruan, Dehao & Xu, Liping & Luo, Jiaowan, 2019. "Stability of hybrid stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 832-841.
    11. Zhou, Jianping & Sang, Chengyan & Li, Xiao & Fang, Muyun & Wang, Zhen, 2018. "H∞ consensus for nonlinear stochastic multi-agent systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 41-58.
    12. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    13. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    14. Zhou, Qi & Yao, Deyin & Wang, Jiahui & Wu, Chengwei, 2016. "Robust control of uncertain semi-Markovian jump systems using sliding mode control method," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 72-87.
    15. Ye, Zhiyong & Zhang, He & Zhang, Hongyu & Zhang, Hua & Lu, Guichen, 2015. "Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 156-165.
    16. Li, Jin & Guo, Ying & Liu, Xiaotong & Zhang, Yifan, 2024. "Stabilization of highly nonlinear stochastic coupled systems with Markovian switching under discrete-time state observations control," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    17. You, Surong & Hu, Liangjian & Mao, Wei & Mao, Xuerong, 2015. "Robustly exponential stabilization of hybrid uncertain systems by feedback controls based on discrete-time observations," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 8-16.
    18. Tran, Ky Quan, 2021. "Exponential contraction of switching jump diffusions with a hidden Markov chain," Statistics & Probability Letters, Elsevier, vol. 178(C).
    19. Ma, Yuechao & Chen, Hui, 2015. "Reliable finite-time H∞ filtering for discrete time-delay systems with Markovian jump and randomly occurring nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 897-915.
    20. Luo, Jiaowan & Liu, Kai, 2008. "Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(5), pages 864-895, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:1038-1054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.