IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v265y2015icp1106-1114.html
   My bibliography  Save this article

Multifractal detrended fluctuation analysis of earthquake magnitude series of Mexican South Pacific Region

Author

Listed:
  • Flores-Márquez, E.L.
  • Ramírez-Rojas, A.
  • Telesca, L.

Abstract

The multifractality of the earthquake magnitude series of seismicity occurred on the Mexican South Pacific Coast was investigated. The area is composed by five seismic regions that are characterized by different tectonic subduction features, due to the interactions between the La Rivera and Cocos plates with the North America plate. Among the five seismic regions, Jalisco is tectonically characterized by the existence of active spreading center (the East Pacific Rise). The multifractal analysis shows that all the five seismic regions are characterized by very close multifractal properties; however, Jalisco is featured by a higher persistence of the magnitude series.

Suggested Citation

  • Flores-Márquez, E.L. & Ramírez-Rojas, A. & Telesca, L., 2015. "Multifractal detrended fluctuation analysis of earthquake magnitude series of Mexican South Pacific Region," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1106-1114.
  • Handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:1106-1114
    DOI: 10.1016/j.amc.2015.06.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315008103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.06.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Telesca, Luciano & Lapenna, Vincenzo & Macchiato, Maria, 2005. "Multifractal fluctuations in seismic interspike series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 629-640.
    2. Ramírez-Rojas, A. & Flores-Márquez, E.L., 2013. "Order parameter analysis of seismicity of the Mexican Pacific coast," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2507-2512.
    3. Telesca, Luciano & Lovallo, Michele & Ramirez-Rojas, Alejandro & Flores-Marquez, Leticia, 2013. "Investigating the time dynamics of seismicity by using the visibility graph approach: Application to seismicity of Mexican subduction zone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6571-6577.
    4. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    5. Aggarwal, S.K. & Lovallo, Michele & Khan, P.K. & Rastogi, B.K. & Telesca, Luciano, 2015. "Multifractal detrended fluctuation analysis of magnitude series of seismicity of Kachchh region, Western India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 56-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kar, Alpa & Chatterjee, Sucharita & Ghosh, Dipak, 2019. "Multifractal detrended cross correlation analysis of Land-surface temperature anomalies and Soil radon concentration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 236-247.
    2. Lahmiri, Salim, 2017. "Multifractal analysis of Moroccan family business stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 183-191.
    3. Zhao, Zhen-yu & Zhu, Jiang & Xia, Bo, 2016. "Multi-fractal fluctuation features of thermal power coal price in China," Energy, Elsevier, vol. 117(P1), pages 10-18.
    4. Milena Kojić & Petar Mitić & Marko Dimovski & Jelena Minović, 2021. "Multivariate Multifractal Detrending Moving Average Analysis of Air Pollutants," Mathematics, MDPI, vol. 9(7), pages 1-17, March.
    5. Ke Ma & Long Guo & Wangheng Liu, 2018. "Investigation of the Spatial Clustering Properties of Seismic Time Series: A Comparative Study from Shallow to Intermediate-Depth Earthquakes," Complexity, Hindawi, vol. 2018, pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Xingxing & Lin, Min, 2017. "Multiscale multifractal detrended fluctuation analysis of earthquake magnitude series of Southern California," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 225-235.
    2. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
    3. Fernandes, Leonardo H.S. & Araújo, Fernando H.A. & Silva, Igor E.M. & Leite, Urbanno P.S. & de Lima, Neílson F. & Stosic, Tatijana & Ferreira, Tiago A.E., 2020. "Multifractal behavior in the dynamics of Brazilian inflation indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    4. Ashutosh Chamoli & R. Yadav, 2015. "Multifractality in seismic sequences of NW Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 19-32, May.
    5. Telesca, Luciano & Toth, Laszlo, 2016. "Multifractal detrended fluctuation analysis of Pannonian earthquake magnitude series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 21-29.
    6. Xiong, Gang & Zhang, Shuning & Liu, Qiang, 2012. "The time-singularity multifractal spectrum distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4727-4739.
    7. Serrano, E. & Figliola, A., 2009. "Wavelet Leaders: A new method to estimate the multifractal singularity spectra," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2793-2805.
    8. Faheem Aslam & Wahbeeah Mohti & Paulo Ferreira, 2020. "Evidence of Intraday Multifractality in European Stock Markets during the Recent Coronavirus (COVID-19) Outbreak," IJFS, MDPI, vol. 8(2), pages 1-13, May.
    9. Pastén, Denisse & Pavez-Orrego, Claudia, 2023. "Multifractal time evolution for intraplate earthquakes recorded in southern Norway during 1980–2021," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    10. Lin, Guangxing & Fu, Zuntao, 2008. "A universal model to characterize different multi-fractal behaviors of daily temperature records over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 573-579.
    11. Wang, Hong-Yong & Wang, Tong-Tong, 2018. "Multifractal analysis of the Chinese stock, bond and fund markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 280-292.
    12. Olivares, Felipe & Zanin, Massimiliano, 2022. "Corrupted bifractal features in finite uncorrelated power-law distributed data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    13. Lahmiri, Salim, 2017. "Multifractal analysis of Moroccan family business stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 183-191.
    14. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M., 2020. "The (in)efficiency of NYMEX energy futures: A multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    15. Yuan, Ying & Zhuang, Xin-tian & Jin, Xiu, 2009. "Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2189-2197.
    16. Maiorino, Enrico & Livi, Lorenzo & Giuliani, Alessandro & Sadeghian, Alireza & Rizzi, Antonello, 2015. "Multifractal characterization of protein contact networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 302-313.
    17. Sahoo, Sushanta Kumar & Katlamudi, Madhusudhanarao & Pedapudi, Chandra Sekhar, 2024. "Multifractal detrended fluctuation analysis of soil radon in the Kachchh Region of Gujarat, India: A case study of earthquake precursors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    18. Gulich, Damián & Zunino, Luciano, 2012. "The effects of observational correlated noises on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4100-4110.
    19. İşcanoğlu-Çekiç, Ayşegül & Gülteki̇n, Havva, 2019. "Are cross-correlations between Turkish Stock Exchange and three major country indices multifractal or monofractal?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 978-990.
    20. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:1106-1114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.