IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i10p2507-2512.html
   My bibliography  Save this article

Order parameter analysis of seismicity of the Mexican Pacific coast

Author

Listed:
  • Ramírez-Rojas, A.
  • Flores-Márquez, E.L.

Abstract

The natural time domain has shown to be an important tool to obtain relevant information hidden in time series of complex systems not easily obtainable by means of standard analysis methods. By assuming that tectonism is a complex system and that earthquakes are similar to a phase transition, it is possible to define an order parameter for seismicity in the context of the natural time domain. In this work we analyze the statistical features of the order parameter (OP) computed for the seismic Mexican catalog spanning from 1974 to 2012. We found that in four out of the six regions the pdf of the order parameter fluctuations is similar with that earlier reported by other authors, but in two of these regions noticeable differences are identified. Also, except for Michoacán, the scaled pdfs analysis of all regions collapse on a universal curve with non-Gaussian tails.

Suggested Citation

  • Ramírez-Rojas, A. & Flores-Márquez, E.L., 2013. "Order parameter analysis of seismicity of the Mexican Pacific coast," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2507-2512.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:10:p:2507-2512
    DOI: 10.1016/j.physa.2013.01.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113000691
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.01.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stavros-Richard G. Christopoulos & Nicholas V. Sarlis, 2017. "An Application of the Coherent Noise Model for the Prediction of Aftershock Magnitude Time Series," Complexity, Hindawi, vol. 2017, pages 1-27, February.
    2. Flores-Márquez, E.L. & Ramírez-Rojas, A. & Telesca, L., 2015. "Multifractal detrended fluctuation analysis of earthquake magnitude series of Mexican South Pacific Region," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1106-1114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:10:p:2507-2512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.