IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v448y2016icp21-29.html
   My bibliography  Save this article

Multifractal detrended fluctuation analysis of Pannonian earthquake magnitude series

Author

Listed:
  • Telesca, Luciano
  • Toth, Laszlo

Abstract

The multifractality of the series of magnitudes of the earthquakes occurred in Pannonia region from 2002 to 2012 has been investigated. The shallow (depth less than 40 km) and deep (depth larger than 70 km) seismic catalogues were analysed by using the multifractal detrended fluctuation analysis. The shallow and deep catalogues are characterized by different multifractal properties: (i) the magnitudes of the shallow events are weakly persistent, while those of the deep ones are almost uncorrelated; (ii) the deep catalogue is more multifractal than the shallow one; (iii) the magnitudes of the deep catalogue are characterized by a right-skewed multifractal spectrum, while that of the shallow magnitude is rather symmetric; (iv) a direct relationship between the b-value of the Gutenberg–Richter law and the multifractality of the magnitudes is suggested.

Suggested Citation

  • Telesca, Luciano & Toth, Laszlo, 2016. "Multifractal detrended fluctuation analysis of Pannonian earthquake magnitude series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 21-29.
  • Handle: RePEc:eee:phsmap:v:448:y:2016:i:c:p:21-29
    DOI: 10.1016/j.physa.2015.12.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115011231
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Telesca, Luciano & Lovallo, Michele & Toth, Laszlo, 2014. "Visibility graph analysis of 2002–2011 Pannonian seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 219-224.
    2. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    3. Juan Luis Lopez & Jesus Guillermo Contreras, 2013. "Performance of multifractal detrended fluctuation analysis on short time series," Papers 1311.2278, arXiv.org.
    4. Aggarwal, S.K. & Lovallo, Michele & Khan, P.K. & Rastogi, B.K. & Telesca, Luciano, 2015. "Multifractal detrended fluctuation analysis of magnitude series of seismicity of Kachchh region, Western India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 56-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaonei & Zeng, Ming & Meng, Qinghao, 2018. "Multivariate multifractal detrended fluctuation analysis of 3D wind field signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 513-523.
    2. Shaw, Pankaj Kumar & Saha, Debajyoti & Ghosh, Sabuj & Janaki, M.S. & Iyengar, A.N. Sekar, 2017. "Investigation of multifractal nature of floating potential fluctuations obtained from a dc glow discharge magnetized plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 363-371.
    3. Ke Ma & Long Guo & Wangheng Liu, 2018. "Investigation of the Spatial Clustering Properties of Seismic Time Series: A Comparative Study from Shallow to Intermediate-Depth Earthquakes," Complexity, Hindawi, vol. 2018, pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Telesca, Luciano & Haro-Pérez, Catalina & Moreno-Torres, L. Rebeca & Ramirez-Rojas, Alejandro, 2018. "Multifractal detrended fluctuation analysis of intensity time series of photons scattered by tracer particles within a polymeric gel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 994-1003.
    3. Sarker, Alivia & Mali, Provash, 2021. "Detrended multifractal characterization of Indian rainfall records," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Flores-Márquez, E.L. & Ramírez-Rojas, A. & Telesca, L., 2015. "Multifractal detrended fluctuation analysis of earthquake magnitude series of Mexican South Pacific Region," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1106-1114.
    5. Wang, Hong-Yong & Wang, Tong-Tong, 2018. "Multifractal analysis of the Chinese stock, bond and fund markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 280-292.
    6. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    7. Fan, Xingxing & Lin, Min, 2017. "Multiscale multifractal detrended fluctuation analysis of earthquake magnitude series of Southern California," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 225-235.
    8. Lahmiri, Salim, 2017. "Multifractal analysis of Moroccan family business stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 183-191.
    9. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    10. Sahoo, Sushanta Kumar & Katlamudi, Madhusudhanarao & Pedapudi, Chandra Sekhar, 2024. "Multifractal detrended fluctuation analysis of soil radon in the Kachchh Region of Gujarat, India: A case study of earthquake precursors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    11. López, J.L. & Veleva, L., 2022. "2D-DFA as a tool for non-destructive characterisation of copper surface exposed to substitute ocean water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    12. Kristjanpoller, Werner & Nekhili, Ramzi & Bouri, Elie, 2024. "Blockchain ETFs and the cryptocurrency and Nasdaq markets: Multifractal and asymmetric cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    13. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
    14. Kristjanpoller, Werner & Bouri, Elie & Takaishi, Tetsuya, 2020. "Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    15. Hongli Niu & Jun Wang, 2014. "Phase and multifractality analyses of random price time series by finite-range interacting biased voter system," Computational Statistics, Springer, vol. 29(5), pages 1045-1063, October.
    16. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M., 2020. "The (in)efficiency of NYMEX energy futures: A multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    17. da Silva Filho, Antônio Carlos & Maganini, Natália Diniz & de Almeida, Eduardo Fonseca, 2018. "Multifractal analysis of Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 954-967.
    18. Zhang, Rui & Jia, Cairang & Wang, Jian, 2022. "Text emotion classification system based on multifractal methods," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    19. Telesca, Luciano & Lovallo, Michele & Kanevski, Mikhail, 2016. "Power spectrum and multifractal detrended fluctuation analysis of high-frequency wind measurements in mountainous regions," Applied Energy, Elsevier, vol. 162(C), pages 1052-1061.
    20. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:448:y:2016:i:c:p:21-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.