IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v88y2007i1-3p269-274.html
   My bibliography  Save this article

Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.)

Author

Listed:
  • Sensoy, Suat
  • Ertek, Ahmet
  • Gedik, Ibrahim
  • Kucukyumuk, Cenk

Abstract

No abstract is available for this item.

Suggested Citation

  • Sensoy, Suat & Ertek, Ahmet & Gedik, Ibrahim & Kucukyumuk, Cenk, 2007. "Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.)," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 269-274, March.
  • Handle: RePEc:eee:agiwat:v:88:y:2007:i:1-3:p:269-274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(06)00269-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ertek, Ahmet & Sensoy, Suat & Kucukyumuk, Cenk & Gedik, Ibrahim, 2006. "Determination of plant-pan coefficients for field-grown eggplant (Solanum melongena L.) using class A pan evaporation values," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 58-66, September.
    2. Ertek, Ahmet & Sensoy, Suat & Kucukyumuk, Cenk & Gedik, Ibrahim, 2004. "Irrigation frequency and amount affect yield components of summer squash (Cucurbita pepo L.)," Agricultural Water Management, Elsevier, vol. 67(1), pages 63-76, June.
    3. Ertek, Ahmet & Sensoy, Suat & Gedik, Ibrahim & Kucukyumuk, Cenk, 2006. "Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 159-172, March.
    4. Fabeiro, C. & Martin de Santa Olalla, F. & de Juan, J. A., 2002. "Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 54(2), pages 93-105, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Youliang & Feng, Shaoyuan & Wang, Fengxin & Feng, Ren & Nie, Wei, 2022. "Effects of drip discharge flux and soil wetted percentage on drip irrigated potato growth with film mulch," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Cabello, M.J. & Castellanos, M.T. & Romojaro, F. & Martnez-Madrid, C. & Ribas, F., 2009. "Yield and quality of melon grown under different irrigation and nitrogen rates," Agricultural Water Management, Elsevier, vol. 96(5), pages 866-874, May.
    3. Li, Yinkun & Wang, Lichun & Xue, Xuzhang & Guo, Wenzhong & Xu, Fan & Li, Youli & Sun, Weituo & Chen, Fei, 2017. "Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain," Agricultural Water Management, Elsevier, vol. 184(C), pages 1-8.
    4. Thawatchai Thongleam & Kriengkrai Meethaworn & Sanya Kuankid, 2024. "Enhancing melon yield through a low-cost drip irrigation control system with time and soil sensor," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 70(1), pages 13-22.
    5. Cai, Zelin & Bai, Jiaming & Li, Rui & He, Daiwei & Du, Rongcheng & Li, Dayong & Hong, Tingting & Zhang, Zhi, 2023. "Water and nitrogen management scheme of melon based on yield−quality−efficiency matching perspective under CO2 enrichment," Agricultural Water Management, Elsevier, vol. 285(C).
    6. Wang, Xing-Chen & Liu, Rui & Luo, Jia-nan & Zhu, Peng-fei & Wang, Yao-sheng & Pan, Xiao-Cui & Shu, Liang-Zuo, 2022. "Effects of water and NPK fertigation on watermelon yield, quality, irrigation-water, and nutrient use efficiency under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    8. Marco Antonio Villegas Olguín & Marcelino Cabrera De la Fuente & Adalberto Benavides Mendoza & Antonio Juárez Maldonado & Alberto Sandoval Rangel & Eloy Fernandez Cusimamani, 2020. "Commercial and nutraceutical quality of grafted melon cultivated under hydric stress," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 47(3), pages 139-149.
    9. Peng-Ming Yang & Song-Tao He, 2022. "The effects of arbuscular mycorrhizal fungi and deficit irrigation on the yield and sugar content of watermelons (Citrullus lanatus)," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 49(4), pages 225-233.
    10. Mondaca-Duarte, F.D. & Reyes-Lastiri, D. & Heinen, M. & van Henten, E.J. & van Mourik, S., 2023. "Visualization of uncertain leaching fraction and drought exposure as a function of irrigation dosage and frequency," Agricultural Water Management, Elsevier, vol. 283(C).
    11. Sharma, Sat Pal & Leskovar, Daniel I. & Crosby, Kevin M. & Volder, Astrid & Ibrahim, A.M.H., 2014. "Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 75-85.
    12. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    13. Wang, Jun & Huang, Guanhua & Li, Jiusheng & Zheng, Jianhua & Huang, Quanzhong & Liu, Haijun, 2017. "Effect of soil moisture-based furrow irrigation scheduling on melon (Cucumis melo L.) yield and quality in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 167-176.
    14. Wang, Jun & Huang, Guanhua & Zhan, Hongbin & Mohanty, Binayak P. & Zheng, Jianhua & Huang, Quanzhong & Xu, Xu, 2014. "Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model," Agricultural Water Management, Elsevier, vol. 141(C), pages 10-22.
    15. Qu, Feng & Zhang, Qi & Jiang, Zhaoxi & Zhang, Caihong & Zhang, Zhi & Hu, Xiaohui, 2022. "Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 273(C).
    16. Yavuz, Duran & Seymen, Musa & Yavuz, Nurcan & Çoklar, Hacer & Ercan, Muhammet, 2021. "Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon," Agricultural Water Management, Elsevier, vol. 246(C).
    17. Nam, Suyun & Kang, Seonghwan & Kim, Jongyun, 2020. "Maintaining a constant soil moisture level can enhance the growth and phenolic content of sweet basil better than fluctuating irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    18. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    19. Sebastian, Bárbara & Baeza, Pilar & Santesteban, Luis G. & Sanchez de Miguel, Patricia & De La Fuente, Mario & Lissarrague, José R., 2015. "Response of grapevine cv. Syrah to irrigation frequency and water distribution pattern in a clay soil," Agricultural Water Management, Elsevier, vol. 148(C), pages 269-279.
    20. Xue, Qimin & Li, Hao & Chen, Jinliang & Du, Taisheng, 2024. "Fruit cracking in muskmelon: Fruit growth and biomechanical properties in different irrigation levels," Agricultural Water Management, Elsevier, vol. 293(C).
    21. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    22. Wang, Qunyan & Jia, Yifan & Pang, Zhongjun & Zhou, Jianbin & Scriber, Kevin Emmanuel & Liang, Bin & Chen, Zhujun, 2024. "Intelligent fertigation improves tomato yield and quality and water and nutrient use efficiency in solar greenhouse production," Agricultural Water Management, Elsevier, vol. 298(C).
    23. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    24. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    25. Farneselli, Michela & Benincasa, Paolo & Tosti, Giacomo & Simonne, Eric & Guiducci, Marcello & Tei, Francesco, 2015. "High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply," Agricultural Water Management, Elsevier, vol. 154(C), pages 52-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    2. Kiymaz, Sultan & Ertek, Ahmet, 2015. "Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes," Agricultural Water Management, Elsevier, vol. 158(C), pages 225-234.
    3. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    4. Fernandez, M.D. & Gonzalez, A.M. & Carreno, J. & Perez, C. & Bonachela, S., 2007. "Analysis of on-farm irrigation performance in Mediterranean greenhouses," Agricultural Water Management, Elsevier, vol. 89(3), pages 251-260, May.
    5. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    6. Cabello, M.J. & Castellanos, M.T. & Romojaro, F. & Martnez-Madrid, C. & Ribas, F., 2009. "Yield and quality of melon grown under different irrigation and nitrogen rates," Agricultural Water Management, Elsevier, vol. 96(5), pages 866-874, May.
    7. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    8. Kiymaz, Sultan & Ertek, Ahmet, 2015. "Yield and quality of sugar beet (Beta vulgaris L.) at different water and nitrogen levels under the climatic conditions of Kırsehir, Turkey," Agricultural Water Management, Elsevier, vol. 158(C), pages 156-165.
    9. Xia, Guimin & Wang, Yujia & Hu, Jiaqi & Wang, Shujun & Zhang, Yan & Wu, Qi & Chi, Daocai, 2021. "Effects of Supplemental Irrigation on Water and Nitrogen Use, Yield, and Kernel Quality of Peanut under Nitrogen-Supplied Conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Abd El-Mageed, Taia A. & Semida, Wael M., 2015. "Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.)," Agricultural Water Management, Elsevier, vol. 159(C), pages 1-10.
    11. Lovelli, S. & Perniola, M. & Ferrara, A. & Di Tommaso, T., 2007. "Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 73-80, August.
    12. Çolak, Yeşim Bozkurt & Yazar, Attila & Gönen, Engin & Eroğlu, E. Çağlar, 2018. "Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns," Agricultural Water Management, Elsevier, vol. 206(C), pages 165-175.
    13. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    14. Zhang, Buchong & Li, Feng-Min & Huang, Gaobao & Cheng, Zi-Yong & Zhang, Yanhong, 2006. "Yield performance of spring wheat improved by regulated deficit irrigation in an arid area," Agricultural Water Management, Elsevier, vol. 79(1), pages 28-42, January.
    15. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    16. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    17. Tsay, T. S. & Huang, C. C., 2003. "Simulation and analysis of drip irrigation infiltration," IWMI Books, Reports H033383, International Water Management Institute.
    18. Ivana Bajić & Borivoj Pejić & Vladimir Sikora & Mirjana Kostić & Aleksandra Ivanovska & Biljana Pejić & Bojan Vojnov, 2022. "The Effects of Irrigation, Topping, and Interrow Spacing on the Yield and Quality of Hemp ( Cannabis sativa L.) Fibers in Temperate Climatic Conditions," Agriculture, MDPI, vol. 12(11), pages 1-17, November.
    19. Qu, Zhaoming & Qi, Xingchao & Liu, Yanli & Liu, Kexin & Li, Chengliang, 2020. "Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse," Agricultural Water Management, Elsevier, vol. 235(C).
    20. Haoze Zhang & Mingliang Gao & Fuying Liu & Huabin Yuan & Zhendong Liu & Mingming Zhang & Quanqi Li & Rui Zong, 2024. "Characteristic of soil moisture utilisation with different water-sensitive cultivars of summer maize in the North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(4), pages 210-219.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:88:y:2007:i:1-3:p:269-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.