IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v293y2024ics0378377424000076.html
   My bibliography  Save this article

Fruit cracking in muskmelon: Fruit growth and biomechanical properties in different irrigation levels

Author

Listed:
  • Xue, Qimin
  • Li, Hao
  • Chen, Jinliang
  • Du, Taisheng

Abstract

Muskmelon cracking during ripening is a physiological disorder that causes severe economic losses. Cracking is related with fruit growth, cuticular membrane (CM), biomechanics and cell wall. Nevertheless, the mechanism of cracking induced by irrigation strategy remains unclear. Therefore, we conducted an experiment in muskmelon grown under three irrigation levels: full irrigation (T1, 100% ET), mild deficit irrigation (T2, 75% ET of T1), and severe deficit irrigation (T3, 50% ET of T1). The results showed that fruit mass of T2 and T3 at maturity were decreased by 11.06% and 19.67%, while fruit cracking rate decreased by 53.13% and 84.38% compared to T1, respectively. Irrigation modified fruit growth rate during fruit expanding (Stage I) and maturation stage (Stage II), with a higher growing rate observed under high irrigation levels. Furthermore, fruits under T2 and T3 had a significantly less deformable (lower strain rate) cuticle than that under T1, resulting in higher CM per unit fruit surface area. The mechanical properties showed different dynamic mode during fruit growth. The pericarp break force and pericarp toughness increased at Stage I and then decreased at Stage II, while pericarp brittleness displayed an increasing trend before harvest. We concluded that deficit irrigation alleviated the fruit cracking by adjusting fruit growth rate, and increasing the pericarp break force and toughness at Stage II. However, both of T1 and T3 resulted in accelerated cell wall decomposition during fruit ripening. Therefore, mild deficit irrigation is an appropriate practice strategy that can greatly mitigate fruit cracking while slightly reducing fruit growth.

Suggested Citation

  • Xue, Qimin & Li, Hao & Chen, Jinliang & Du, Taisheng, 2024. "Fruit cracking in muskmelon: Fruit growth and biomechanical properties in different irrigation levels," Agricultural Water Management, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000076
    DOI: 10.1016/j.agwat.2024.108672
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Li, Hongping & Wang, Yaosheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu & Liu, Chunwei & Qiu, Rangjian, 2022. "Effects of water deficit at different growth stages under drip irrigation on fruit quality of citrus in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Sensoy, Suat & Ertek, Ahmet & Gedik, Ibrahim & Kucukyumuk, Cenk, 2007. "Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.)," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 269-274, March.
    3. Yavuz, Duran & Seymen, Musa & Yavuz, Nurcan & Çoklar, Hacer & Ercan, Muhammet, 2021. "Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    2. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    3. Peng-Ming Yang & Song-Tao He, 2022. "The effects of arbuscular mycorrhizal fungi and deficit irrigation on the yield and sugar content of watermelons (Citrullus lanatus)," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 49(4), pages 225-233.
    4. Liu, Minguo & Wu, Xiaojuan & Yang, Huimin, 2022. "Evapotranspiration characteristics and soil water balance of alfalfa grasslands under regulated deficit irrigation in the inland arid area of Midwestern China," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Zhang, Youliang & Feng, Shaoyuan & Wang, Fengxin & Feng, Ren & Nie, Wei, 2022. "Effects of drip discharge flux and soil wetted percentage on drip irrigated potato growth with film mulch," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    7. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    8. Sharma, Sat Pal & Leskovar, Daniel I. & Crosby, Kevin M. & Volder, Astrid & Ibrahim, A.M.H., 2014. "Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 75-85.
    9. Cabello, M.J. & Castellanos, M.T. & Romojaro, F. & Martnez-Madrid, C. & Ribas, F., 2009. "Yield and quality of melon grown under different irrigation and nitrogen rates," Agricultural Water Management, Elsevier, vol. 96(5), pages 866-874, May.
    10. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    11. Qu, Feng & Zhang, Qi & Jiang, Zhaoxi & Zhang, Caihong & Zhang, Zhi & Hu, Xiaohui, 2022. "Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 273(C).
    12. Wang, Jun & Huang, Guanhua & Li, Jiusheng & Zheng, Jianhua & Huang, Quanzhong & Liu, Haijun, 2017. "Effect of soil moisture-based furrow irrigation scheduling on melon (Cucumis melo L.) yield and quality in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 167-176.
    13. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    14. Liu, Lining & Zuo, Qiang & Shi, Jianchu & Wu, Xun & Wei, Congmin & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Balancing economic benefits and environmental repercussions based on smart irrigation by regulating root zone water and salinity dynamics," Agricultural Water Management, Elsevier, vol. 285(C).
    15. Marco Antonio Villegas Olguín & Marcelino Cabrera De la Fuente & Adalberto Benavides Mendoza & Antonio Juárez Maldonado & Alberto Sandoval Rangel & Eloy Fernandez Cusimamani, 2020. "Commercial and nutraceutical quality of grafted melon cultivated under hydric stress," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 47(3), pages 139-149.
    16. Li, Yinkun & Wang, Lichun & Xue, Xuzhang & Guo, Wenzhong & Xu, Fan & Li, Youli & Sun, Weituo & Chen, Fei, 2017. "Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain," Agricultural Water Management, Elsevier, vol. 184(C), pages 1-8.
    17. Wang, Xing-Chen & Liu, Rui & Luo, Jia-nan & Zhu, Peng-fei & Wang, Yao-sheng & Pan, Xiao-Cui & Shu, Liang-Zuo, 2022. "Effects of water and NPK fertigation on watermelon yield, quality, irrigation-water, and nutrient use efficiency under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 271(C).
    18. Sebastian, Bárbara & Baeza, Pilar & Santesteban, Luis G. & Sanchez de Miguel, Patricia & De La Fuente, Mario & Lissarrague, José R., 2015. "Response of grapevine cv. Syrah to irrigation frequency and water distribution pattern in a clay soil," Agricultural Water Management, Elsevier, vol. 148(C), pages 269-279.
    19. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    20. Thawatchai Thongleam & Kriengkrai Meethaworn & Sanya Kuankid, 2024. "Enhancing melon yield through a low-cost drip irrigation control system with time and soil sensor," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 70(1), pages 13-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.