IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v271y2022ics0378377422003328.html
   My bibliography  Save this article

Effects of water and NPK fertigation on watermelon yield, quality, irrigation-water, and nutrient use efficiency under alternate partial root-zone drip irrigation

Author

Listed:
  • Wang, Xing-Chen
  • Liu, Rui
  • Luo, Jia-nan
  • Zhu, Peng-fei
  • Wang, Yao-sheng
  • Pan, Xiao-Cui
  • Shu, Liang-Zuo

Abstract

Alternate partial root-zone drip irrigation (APRD) is efficient in improving irrigation water use efficiency (IWUE). However, little is known about the coupling effects of irrigation and NPK fertilisers on watermelon performance and resource use efficiency under APRD. This study investigated the effects of drip irrigation modes (conventional drip irrigation [CDI], APRD) coupled with NPK fertilisation rates on watermelon growth, IWUE, nutrient use efficiency, yield, and fruit quality. There were five treatments coded as CSH, CDH, CDL, ADH and ADL. The capital letters in the codes indicate drip irrigation modes as CDI (C) or APRD (A), irrigation amount as sufficient (S) or deficit (D, 60% of the total amount of S), and NPK fertilisation rates as high (H) or low (L, 60% of the amount of H). The results showed that compared with CDI at the same fertigation level, APRD increased the photosynthetic rate by 10.1%, plant growth by 25.5%, and NPK absorption by 29.1% across all growth stages, respectively. The promotion effect of APRD was more prominent at early growth stages. APRD increased watermelon yield by 10.4%, thus increased IWUE and fertiliser partial productivity at the same extent, while decreased the NPK use efficiency by 7.0% compared with the CDI counterparts. Compared with CSH, APRD increased vitamin C, total soluble solids (TSS), and the ratio of TSS to total organic acids by 63.2%, 6.2% and 17.2%, respectively. Additionally, the yield didn’t decrease in ADL whereas it increased in ADH, leading to an increase in IWUE of 67.8–78.7% under APRD treatments compared with CSH. Conclusively, APRD could save 40% of total irrigation water and NPK fertilisers without yield reduction while improving fruit quality. Thus, it is suggested as a sustainable practice for watermelon production.

Suggested Citation

  • Wang, Xing-Chen & Liu, Rui & Luo, Jia-nan & Zhu, Peng-fei & Wang, Yao-sheng & Pan, Xiao-Cui & Shu, Liang-Zuo, 2022. "Effects of water and NPK fertigation on watermelon yield, quality, irrigation-water, and nutrient use efficiency under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003328
    DOI: 10.1016/j.agwat.2022.107785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422003328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shu, Liang-Zuo & Liu, Rui & Min, Wei & Wang, Yao-sheng & Hong-mei, Yu & Zhu, Peng-fei & Zhu, Ji-rong, 2020. "Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    2. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    3. Zheng, Jianhua & Huang, Guanhua & Jia, Dongdong & Wang, Jun & Mota, Mariana & Pereira, Luis S. & Huang, Quanzhong & Xu, Xu & Liu, Haijun, 2013. "Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 129(C), pages 181-193.
    4. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Kundu, Bimal Chandra & Barman, Alak & Murad, Khandakar Faisal Ibn & Akter, Farzana, 2019. "Yield and quality of potato tuber and its water productivity are influenced by alternate furrow irrigation in a raised bed system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    5. Sensoy, Suat & Ertek, Ahmet & Gedik, Ibrahim & Kucukyumuk, Cenk, 2007. "Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.)," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 269-274, March.
    6. Kirda, C. & Cetin, M. & Dasgan, Y. & Topcu, S. & Kaman, H. & Ekici, B. & Derici, M. R. & Ozguven, A. I., 2004. "Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation," Agricultural Water Management, Elsevier, vol. 69(3), pages 191-201, October.
    7. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    8. Zhang, Qiang & Wu, Shen & Chen, Chu & Shu, Liang-Zuo & Zhou, Xiu-Jie & Zhu, Sheng-Nan, 2014. "Regulation of nitrogen forms on growth of eggplant under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 142(C), pages 56-65.
    9. Liu, Rui & Yang, Yu & Wang, Yao-sheng & Wang, Xing-Chen & Rengel, Zed & Zhang, Wen-Ju & Shu, Liang-Zuo, 2020. "Alternate partial root-zone drip irrigation with nitrogen fertigation promoted tomato growth, water and fertilizer-nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 233(C).
    10. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Kaman, Harun & Kirda, Cevat & Sesveren, Sertan, 2011. "Genotypic differences of maize in grain yield response to deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 801-807, March.
    12. Topak, Ramazan & Acar, Bilal & Uyanöz, Refik & Ceyhan, Ercan, 2016. "Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 176(C), pages 180-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Xiaolei & Yang, Xiaosong & Hu, Zhengyi & Liu, Fulai & Xie, Zijian & Li, Songyan & Wang, Guoxi & Li, Meng & Sun, Zheng & Bol, Roland, 2024. "Biochar effects on soil nitrogen retention, leaching and yield of perennial citron daylily under three irrigation regimes," Agricultural Water Management, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu, Liang-Zuo & Liu, Rui & Min, Wei & Wang, Yao-sheng & Hong-mei, Yu & Zhu, Peng-fei & Zhu, Ji-rong, 2020. "Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    2. Wang, Jingwei & Li, Yuan & Niu, Wenquan, 2021. "Effect of alternating drip irrigation on soil gas emissions, microbial community composition, and root–soil interactions," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    5. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    6. Yang, Xin & Zhang, Peng & Wei, Zhenhua & Liu, Jie & Hu, Xiaotao & Liu, Fulai, 2020. "Effects of CO2 fertilization on tomato fruit quality under reduced irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    7. Li, Li & Wang, Yaosheng & Liu, Fulai, 2021. "Alternate partial root-zone N-fertigation increases water use efficiency and N uptake of barley at elevated CO2," Agricultural Water Management, Elsevier, vol. 258(C).
    8. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    9. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    10. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    11. Wu, You & Si, Wei & Yan, Shicheng & Wu, Lifeng & Zhao, Wenju & Zhang, Jiale & Zhang, Fucang & Fan, Junliang, 2023. "Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    13. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    14. Guo, Lijie & Cao, Hongxia & Helgason, Warren D. & Yang, Hui & Wu, Xuanyi & Li, Hongzheng, 2022. "Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    15. Yao, Zhenzhu & Hou, Xuemin & Wang, Yu & Du, Taisheng, 2023. "Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions," Agricultural Water Management, Elsevier, vol. 282(C).
    16. Li, Wenjia & Gao, Yanming & Tian, Yongqiang & Li, Jianshe, 2022. "Double-root-grafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 264(C).
    17. Wang, Xiaodong & Tian, Wei & Zheng, Wende & Shah, Sadiq & Li, Jianshe & Wang, Xiaozhuo & Zhang, Xueyan, 2023. "Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis," Agricultural Water Management, Elsevier, vol. 280(C).
    18. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    19. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
    20. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.