IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v66y2004i1p1-13.html
   My bibliography  Save this article

A GIS-based model to estimate the regionally distributed drought water demand

Author

Listed:
  • Satti, Sudheer R.
  • Jacobs, Jennifer M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Satti, Sudheer R. & Jacobs, Jennifer M., 2004. "A GIS-based model to estimate the regionally distributed drought water demand," Agricultural Water Management, Elsevier, vol. 66(1), pages 1-13, April.
  • Handle: RePEc:eee:agiwat:v:66:y:2004:i:1:p:1-13
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(03)00245-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George, B. A. & Shende, S. A. & Raghuwanshi, N. S., 2000. "Development and testing of an irrigation scheduling model," Agricultural Water Management, Elsevier, vol. 46(2), pages 121-136, December.
    2. D'Urso, G. & Menenti, M. & Santini, A., 1999. "Regional application of one-dimensional water flow models for irrigation management," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 291-302, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satti, Sudheer R. & Jacobs, Jennifer M. & Irmak, Suat, 2004. "Agricultural water management in a humid region: sensitivity to climate, soil and crop parameters," Agricultural Water Management, Elsevier, vol. 70(1), pages 51-65, October.
    2. Romero, Consuelo C. & Dukes, Michael D. & Baigorria, Guillermo A. & Cohen, Ron, 2009. "Comparing theoretical irrigation requirement and actual irrigation for citrus in Florida," Agricultural Water Management, Elsevier, vol. 96(3), pages 473-483, March.
    3. Yi Cai & Yasuhiro Mitani & Hiro Ikemi & Shuguang Liu, 2012. "Effect of Precipitation Timescale Selection on Tempo-spatial Assessment of Paddy Water Demand in Chikugo-Saga Plain, Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1731-1746, April.
    4. Garci­a-Vila, M. & Lorite, I.J. & Soriano, M.A. & Fereres, E., 2008. "Management trends and responses to water scarcity in an irrigation scheme of Southern Spain," Agricultural Water Management, Elsevier, vol. 95(4), pages 458-468, April.
    5. Hadria, R. & Duchemin, B. & Baup, F. & Le Toan, T. & Bouvet, A. & Dedieu, G. & Le Page, M., 2009. "Combined use of optical and radar satellite data for the detection of tillage and irrigation operations: Case study in Central Morocco," Agricultural Water Management, Elsevier, vol. 96(7), pages 1120-1127, July.
    6. Palazzo, Amanda & Brozović, Nicholas, 2014. "The role of groundwater trading in spatial water management," Agricultural Water Management, Elsevier, vol. 145(C), pages 50-60.
    7. Ghimire, Monika & Stoecker, Art & Boyer, Tracy A. & Bhavsar, Hiren & Vitale, Jeffrey, 2016. "An Integration of GIS and Simulation Models for a Cost Benefit Analysis of Irrigation Development," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(4).
    8. Ying Wang & Yun Chen & Shizhang Peng, 2011. "A GIS Framework for Changing Cropping Pattern Under Different Climate Conditions and Irrigation Availability Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3073-3090, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minacapilli, M. & Iovino, M. & D'Urso, G., 2008. "A distributed agro-hydrological model for irrigation water demand assessment," Agricultural Water Management, Elsevier, vol. 95(2), pages 123-132, February.
    2. Sarr, Benoit & Lecoeur, Jeremie & Clouvel, Pascal, 2004. "Irrigation scheduling of confectionery groundnut (Arachis hypogeaea L.) in Senegal using a simple water balance model," Agricultural Water Management, Elsevier, vol. 67(3), pages 201-220, July.
    3. Mandal, Uttam Kumar & Victor, U.S. & Srivastava, N.N. & Sharma, K.L. & Ramesh, V. & Vanaja, M. & Korwar, G.R. & Ramakrishna, Y.S., 2007. "Estimating yield of sorghum using root zone water balance model and spectral characteristics of crop in a dryland Alfisol," Agricultural Water Management, Elsevier, vol. 87(3), pages 315-327, February.
    4. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.
    5. Panigrahi, B. & Panda, Sudhindra N., 2003. "Field test of a soil water balance simulation model," Agricultural Water Management, Elsevier, vol. 58(3), pages 223-240, February.
    6. M. Rowshon & M. Amin & T. Lee & A. Shariff, 2009. "GIS-Integrated Rice Irrigation Management Information System for a River-Fed Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2841-2866, November.
    7. Gloaguen, Romain M. & Rowland, Diane L. & Brym, Zachary T. & Wilson, Chris. H. & Chun, Hyen Chung & Langham, Ray, 2021. "A METHOD FOR DEVELOPING IRRIGATION DECISION SUPPORT SYSTEMS de novo: EXAMPLE OF SESAME (Sesamum indicum L.) A KNOWN DROUGHT TOLERANT SPECIES," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Autovino, Dario & Minacapilli, Mario & Provenzano, Giuseppe, 2016. "Modelling bulk surface resistance by MODIS data and assessment of MOD16A2 evapotranspiration product in an irrigation district of Southern Italy," Agricultural Water Management, Elsevier, vol. 167(C), pages 86-94.
    9. George, Biju A. & Raghuwanshi, N. S. & Singh, R., 2004. "Development and testing of a GIS integrated irrigation scheduling model," Agricultural Water Management, Elsevier, vol. 66(3), pages 221-237, May.
    10. Shang, Songhao & Li, Xichun & Mao, Xiaomin & Lei, Zhidong, 2004. "Simulation of water dynamics and irrigation scheduling for winter wheat and maize in seasonal frost areas," Agricultural Water Management, Elsevier, vol. 68(2), pages 117-133, August.
    11. Bastiaanssen, W.G.M. & Allen, R.G. & Droogers, P. & D'Urso, G. & Steduto, P., 2007. "Twenty-five years modeling irrigated and drained soils: State of the art," Agricultural Water Management, Elsevier, vol. 92(3), pages 111-125, September.
    12. Consoli, Simona & D'Urso, Guido & Toscano, Attilio, 2006. "Remote sensing to estimate ET-fluxes and the performance of an irrigation district in southern Italy," Agricultural Water Management, Elsevier, vol. 81(3), pages 295-314, March.
    13. Shang, Songhao & Mao, Xiaomin, 2006. "Application of a simulation based optimization model for winter wheat irrigation scheduling in North China," Agricultural Water Management, Elsevier, vol. 85(3), pages 314-322, October.
    14. Hack-ten Broeke, M. J. D., 2001. "Irrigation management for optimizing crop production and nitrate leaching on grassland," Agricultural Water Management, Elsevier, vol. 49(2), pages 97-114, July.
    15. Prashant K. Srivastava, 2017. "Satellite Soil Moisture: Review of Theory and Applications in Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3161-3176, August.
    16. Hasnain, Saquibul & Singh, Ajai, 2022. "Development of Electronic Wetting Front Detector for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Jhorar, R.K. & Smit, A.A.M.F.R. & Roest, C.W.J., 2009. "Assessment of alternative water management options for irrigated agriculture," Agricultural Water Management, Elsevier, vol. 96(6), pages 975-981, June.
    18. Monika MARKOVIĆ & Vilim FILIPOVIĆ & Tarzan LEGOVIĆ & Marko JOSIPOVIĆ & Vjekoslav TADIĆ, 2015. "Evaluation of different soil water potential by field capacity threshold in combination with a triggered irrigation module," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(3), pages 164-171.
    19. Fan, Yubing & Massey, Raymond E. & Park, Seong C., 2017. "Multicrop Production Decisions and Economic Irrigation Water Use Efficiency: Effects of Water Costs, Pressure Irrigation Adoption and Climate Determinants," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258561, Agricultural and Applied Economics Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:66:y:2004:i:1:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.