IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i2d10.1007_s10668-020-00619-y.html
   My bibliography  Save this article

Evaluation of water demand and supply under varying meteorological conditions in Eastern India and mitigation strategies for sustainable agricultural production

Author

Listed:
  • Laishram Kanta Singh

    (Indian Institute of Technology Kharagpur)

  • Madan K. Jha

    (Indian Institute of Technology Kharagpur)

  • V. M. Chowdary

    (Regional Remote Sensing Centre-North, NRSC)

Abstract

Spatio-temporal variability of water demand and supplies under different meteorological conditions and their linkage with dynamic groundwater (annually utilizable groundwater) reserve was investigated in a Canal Command (area irrigated by a canal system) of Eastern India. Annual irrigation water supply from surface water sources (i.e., canal, river lift and tanks) and groundwater sources (i.e., shallow and deep tubewells) was estimated for different meteorological conditions. Annual water demands as crop irrigation requirements (CIRs) for the prevailing cropping patterns in the study area were also assessed under different meteorological conditions using crop evapotranspiration and effective rainfall data. Thereafter, the estimated irrigation water supply and irrigation water demand were subjected to spatio-temporal and statistical analyses. The mean annual CIR in the study area was estimated at 7002 ± 852 MCM during 2004–2013 period. Boro paddy was found to be the most water-consuming crop, accounting for about 50% of the total crop water requirements. The mean annual dynamic groundwater reserve (DGWR) in the study area was estimated to be 5169 ± 782 MCM. Considering DGWR as an additional source of irrigation water, 28, 25 and 35 blocks were characterized as ‘water surplus’ during ‘normal,’ ‘dry’ and ‘wet’ years, respectively. Also, DGWR substantially reduced demand–supply gaps in the remaining blocks. The surplus water available in the blocks due to DGWR availability could be used to mitigate water-deficit condition in neighboring blocks. Thus, this study suggests cost-effective alternatives for the efficient management of available water resources and identifies management strategies for sustainable agricultural production under diverse climatic conditions.

Suggested Citation

  • Laishram Kanta Singh & Madan K. Jha & V. M. Chowdary, 2021. "Evaluation of water demand and supply under varying meteorological conditions in Eastern India and mitigation strategies for sustainable agricultural production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1264-1291, February.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:2:d:10.1007_s10668-020-00619-y
    DOI: 10.1007/s10668-020-00619-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00619-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00619-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malin Falkenmark, 2007. "Shift in thinking to address the 21st century hunger gap," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 3-18, January.
    2. Connor, Jeffery D. & Schwabe, Kurt & King, Darran & Knapp, Keith, 2012. "Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation," Ecological Economics, Elsevier, vol. 77(C), pages 149-157.
    3. Fisher, Brendan & Turner, R. Kerry & Morling, Paul, 2009. "Defining and classifying ecosystem services for decision making," Ecological Economics, Elsevier, vol. 68(3), pages 643-653, January.
    4. Omar K.M. Ouda, 2014. "Water demand versus supply in Saudi Arabia: current and future challenges," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 30(2), pages 335-344, June.
    5. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    6. A. Loukas & N. Mylopoulos & L. Vasiliades, 2007. "A Modeling System for the Evaluation of Water Resources Management Strategies in Thessaly, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1673-1702, October.
    7. Chowdary, V.M. & Rao, N.H. & Sarma, P.B.S., 2005. "Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects," Agricultural Water Management, Elsevier, vol. 75(3), pages 194-225, July.
    8. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    9. Hajilal, M. S. & Rao, N. H. & Sarma, P. B. S., 1998. "Planning intraseasonal water requirements in irrigation projects," Agricultural Water Management, Elsevier, vol. 37(2), pages 163-182, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sucharita Pradhan & Anirban Dhar & Kamlesh Narayan Tiwari & Satiprasad Sahoo, 2023. "Spatiotemporal analysis of land use land cover and future simulation for agricultural sustainability in a sub-tropical region of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7873-7902, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merica Slišković & Katja Božić & Jelena Žanić Mikuličić & Ines Kolanović, 2024. "Addressing the Significance of the Union List with a Focus on Marine Invasive Alien Species Impacts," Sustainability, MDPI, vol. 16(21), pages 1-25, October.
    2. Vassilios Pisinaras & Frank Herrmann & Andreas Panagopoulos & Evangelos Tziritis & Ian McNamara & Frank Wendland, 2023. "Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study," Sustainability, MDPI, vol. 15(5), pages 1-29, February.
    3. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    4. Daniela D’Alessandro & Andrea Rebecchi & Letizia Appolloni & Andrea Brambilla & Silvio Brusaferro & Maddalena Buffoli & Maurizio Carta & Alessandra Casuccio & Liliana Coppola & Maria Vittoria Corazza , 2023. "Re-Thinking the Environment, Cities, and Living Spaces for Public Health Purposes, According with the COVID-19 Lesson: The LVII Erice Charter," Land, MDPI, vol. 12(10), pages 1-17, September.
    5. Bolaños-Valencia, Ingrid & Villegas-Palacio, Clara & López-Gómez, Connie Paola & Berrouet, Lina & Ruiz, Aura, 2019. "Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    6. Ze Han & Wei Song & Xiangzheng Deng, 2016. "Responses of Ecosystem Service to Land Use Change in Qinghai Province," Energies, MDPI, vol. 9(4), pages 1-16, April.
    7. Alessio D’Auria & Pasquale De Toro & Nicola Fierro & Elisa Montone, 2018. "Integration between GIS and Multi-Criteria Analysis for Ecosystem Services Assessment: A Methodological Proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy)," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    8. Johann Audrain & Mateo Cordier & Sylvie Faucheux & Martin O’Connor, 2013. "Écologie territoriale et indicateurs pour un développement durable de la métropole parisienne," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(3), pages 523-559.
    9. Hooper, Tara & Cooper, Philip & Hunt, Alistair & Austen, Melanie, 2014. "A methodology for the assessment of local-scale changes in marine environmental benefits and its application," Ecosystem Services, Elsevier, vol. 8(C), pages 65-74.
    10. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    11. H. Spencer Banzhaf & James Boyd, 2012. "The Architecture and Measurement of an Ecosystem Services Index," Sustainability, MDPI, vol. 4(4), pages 1-32, March.
    12. Wang, Shifeng & Wang, Sicong & Smith, Pete, 2015. "Quantifying impacts of onshore wind farms on ecosystem services at local and global scales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1424-1428.
    13. Changsen Zhao & Bing Shen & Lingmei Huang & Zhidong Lei & Heping Hu & Shixiu Yang, 2009. "A Dissipative Hydrological Model for the Hotan Oasis (DHMHO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1183-1210, April.
    14. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    15. Elena Ojea & Paulo Nunes & Maria Loureiro, 2010. "Mapping Biodiversity Indicators and Assessing Biodiversity Values in Global Forests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(3), pages 329-347, November.
    16. Bo Yang & Ming-Han Li & Shujuan Li, 2013. "Design-with-Nature for Multifunctional Landscapes: Environmental Benefits and Social Barriers in Community Development," IJERPH, MDPI, vol. 10(11), pages 1-26, October.
    17. Shujun Liu & Xinzhuan Yao & Degang Zhao & Litang Lu, 2021. "Evaluation of the ecological benefits of tea gardens in Meitan County, China, using the InVEST model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7140-7155, May.
    18. Stapleton, L.M. & Hanna, P. & Ravenscroft, N. & Church, A., 2014. "A flexible ecosystem services proto-typology based on public opinion," Ecological Economics, Elsevier, vol. 106(C), pages 83-90.
    19. Norgaard, Richard B., 2010. "Ecosystem services: From eye-opening metaphor to complexity blinder," Ecological Economics, Elsevier, vol. 69(6), pages 1219-1227, April.
    20. Alisson Lopes Rodrigues & Lineu Neiva Rodrigues & Guilherme Fernandes Marques & Pedro Manuel Villa, 2023. "Simulation Model to Assess the Water Dynamics in Small Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2019-2038, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:2:d:10.1007_s10668-020-00619-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.