IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i7d10.1007_s10668-020-01092-3.html
   My bibliography  Save this article

Potential and net recharge assessment in paddy dominated Hirakud irrigation command of eastern India using water balance and geospatial approaches

Author

Listed:
  • Pawan S. Wable

    (International Crop Research Institute for the Semi-Arid Tropics)

  • V. M. Chowdary

    (National Remote Sensing Centre)

  • S. N. Panda

    (Govt. of India
    Indian Institute of Technology)

  • Sirisha Adamala

    (Central Island Agricultural Research Institute)

  • C. S. Jha

    (National Remote Sensing Centre)

Abstract

Spatially distributed potential and net recharge rates were assessed in the paddy dominated Hirakud command area (Eastern India) at 100 m grid resolution using surface water balance and Water Table Fluctuation (WTF) methods, respectively, for the period 2001–05. Net recharge estimated using the WTF method corresponding to observation well locations was further interpolated using kriging technique available in the ArcGIS software. Net recharge to potential recharge ratios (%) were also assessed spatially. Water balance components (i) runoff was estimated using the Natural Resources Conservation Service-Curve Number (NRCS-CN) method (ii) reference evapotranspiration by (Hargreaves and Samani, Applied Engineering Agriculture ASABE 1:96–99, 1985)), crop evapotranspiration by (Allen et al., Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrigation and Drainage, Food and Agriculture Organization, Rome, Italy, 1998) and evaporation from uncultivated lands by Ritchie (1972) approaches, and (iii) canal seepage using simple canal flow model. Annual groundwater draft during Kharif and Rabi was found to be 144.41 and 112.49 ha-m, respectively. Nearly, 90% of the study area contributed runoff in the range of 200–400 mm during the years 2002–03, 2003–04, and 2004–05. The estimated seepage losses vary between 5 and 15% of irrigation depth for all distributaries. Potential groundwater recharge during wet, normal, and dry years ranges between 650 and 1033 mm, and equivalent to 67%, 78%, and 60% of annual rainfall, respectively. Net recharge ranges between 8 and 11% of the annual rainfall. Mean ratio between net recharge to potential recharge is nearly 30%, indicating that nearly 70% of potential recharge is accounted as outflow from the study area. Parmanpur distributary canal located at the centre of the study area that exhibited higher potential recharge can be scheduled at the end to avoid water logging problem. Further, extraction of groundwater during non-monsoon period for irrigation purpose not only helps in controlling waterlogging but also helps in maintaining stable groundwater level. Overall, spatio-temporal distribution of recharge in the command area indicated that the irrigation demands during non-monsoon season can be met through sustainable management of underexploited groundwater resources. Such an integrated management of surface and groundwater can help in improving water use efficiencies as well as agricultural productivity.

Suggested Citation

  • Pawan S. Wable & V. M. Chowdary & S. N. Panda & Sirisha Adamala & C. S. Jha, 2021. "Potential and net recharge assessment in paddy dominated Hirakud irrigation command of eastern India using water balance and geospatial approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10869-10891, July.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:7:d:10.1007_s10668-020-01092-3
    DOI: 10.1007/s10668-020-01092-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-01092-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-01092-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chinnasamy, Pennan & Maheshwari, Basant & Dillon, Peter & Purohit, Ramesh & Dashora, Yogita & Soni, Prahlad & Dashora, Ragini, 2018. "Estimation of specific yield using water table fluctuations and cropped area in a hardrock aquifer system of Rajasthan, India," Agricultural Water Management, Elsevier, vol. 202(C), pages 146-155.
    2. Chowdary, V. M. & Rao, N. H. & Sarma, P. B. S., 2003. "GIS-based decision support system for groundwater assessment in large irrigation project areas," Agricultural Water Management, Elsevier, vol. 62(3), pages 229-252, October.
    3. Hajilal, M. S. & Rao, N. H. & Sarma, P. B. S., 1998. "Planning intraseasonal water requirements in irrigation projects," Agricultural Water Management, Elsevier, vol. 37(2), pages 163-182, July.
    4. World Bank, 2010. "Deep Wells and Prudence : Towards Pragmatic Action for Addressing Groundwater Overexploitation in India," World Bank Publications - Reports 2835, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdary, V.M. & Rao, N.H. & Sarma, P.B.S., 2005. "Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects," Agricultural Water Management, Elsevier, vol. 75(3), pages 194-225, July.
    2. G. Gnanachandrasamy & C. Dushiyanthan & T. Jeyavel Rajakumar & Yongzhang Zhou, 2020. "Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: using Geographical Information System (GIS) and Water Quality Index (WQI)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 759-789, February.
    3. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    4. Soumik Bhattacharya & Swarupa Das & Sandipan Das & Mahesh Kalashetty & Sumedh R. Warghat, 2021. "An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 495-510, January.
    5. Komeda, Kenji, 2021. "Environmental Factors and Internal Migration in India," Warwick-Monash Economics Student Papers 20, Warwick Monash Economics Student Papers.
    6. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    7. Asprilla-Echeverria, John, 2024. "How do farmers adapt to water scarcity? Evidence from field experiments," Agricultural Water Management, Elsevier, vol. 297(C).
    8. Strand, Jon, 2012. "Low-level versus high-level equilibrium in public utility services," Journal of Public Economics, Elsevier, vol. 96(1), pages 163-172.
    9. Audrey Richard-Ferroudji & Nicolas Faysse & Zhour Bouzidi & Menon Ragunath & Jean-Daniel Rinaudo, 2016. "Proposal COSUST Special Issue « Co-designing Research on Social Transformations to Sustainability » Title: The DIALAQ project on sustainable groundwater management: a transdisciplinary and transcultur," Post-Print hal-01378517, HAL.
    10. Panigrahi, B. & Panda, Sudhindra N., 2003. "Field test of a soil water balance simulation model," Agricultural Water Management, Elsevier, vol. 58(3), pages 223-240, February.
    11. Samira Shayanmehr & Jana Ivanič Porhajašová & Mária Babošová & Mahmood Sabouhi Sabouni & Hosein Mohammadi & Shida Rastegari Henneberry & Naser Shahnoushi Foroushani, 2022. "The Impacts of Climate Change on Water Resources and Crop Production in an Arid Region," Agriculture, MDPI, vol. 12(7), pages 1-22, July.
    12. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    13. Peragón, Juan M. & Pérez-Latorre, Francisco J. & Delgado, Antonio & Tóth, Tibor, 2018. "Best management irrigation practices assessed by a GIS-based decision tool for reducing salinization risks in olive orchards," Agricultural Water Management, Elsevier, vol. 202(C), pages 33-41.
    14. Namrata Chindarkar & R. Quentin Grafton, 2019. "India's depleting groundwater: When science meets policy," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 6(1), pages 108-124, January.
    15. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    16. World Bank, 2020. "Managing Groundwater for Drought Resilience in South Asia," World Bank Publications - Reports 33332, The World Bank Group.
    17. Kumar, Dinesh M., 2013. "Raising Agricultural Productivity, Reducing Groundwater Use and Mitigating Carbon Emissions: Role of Energy Pricing in Farm Sector," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(3), pages 1-17.
    18. Sandip Kumar Das & Arun Kumar Pramanik & Deepanjan Majumder & Abhik Chatterjee, 2024. "Fluoride and iron in groundwater of a mixed ferricrete and calcrete bearing region in India and assessment of health risk," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23767-23793, September.
    19. Sidhu, R.S. & Vatta, Kamal & Lall, Upmanu, 2011. "Climate Change Impact and Management Strategies for Sustainable Water-Energy-Agriculture Outcomes in Punjab," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 66(3), pages 1-12.
    20. Prabir Mukherjee & Chander Singh & Saumitra Mukherjee, 2012. "Delineation of Groundwater Potential Zones in Arid Region of India—A Remote Sensing and GIS Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2643-2672, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:7:d:10.1007_s10668-020-01092-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.