IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v271y2022ics0378377422003481.html
   My bibliography  Save this article

Water use - yield relationship of maize as influenced by biochar and inorganic fertilizer applications in a tropical sandy clay loam soil

Author

Listed:
  • Babalola, Toju Esther
  • Adabembe, Bolaji Adelanke
  • Faloye, Oluwaseun Temitope

Abstract

Empirical relationship between maize yield and evapotranspiration as influenced by biochar and inorganic fertilizer has been scarcely investigated. Therefore, the study's objectives are to; (i) determine the yield response factor (Ky) of maize under drip irrigation with/without biochar and inorganic fertilizer application; (ii) determine if soil hydrophysical and chemical properties affect the response of maize to water stress under biochar and inorganic fertilizer applications, and (iii) determine the possible mechanism by which biochar improves yield and water use efficiency of maize under deficit irrigation. Field experiments were carried out using a factorial design. Two rates of biochar application (0 and 20 t/ha), two levels of fertilizer (0 and 300 kg/ha) were adopted under three water management strategies (100 % of Full Irrigation Treatment; FIT, 80 % FIT, and 60 % FIT) using drip irrigation. The crop evapotranspiration was determined using the soil water budget method while the grain yields were measured at harvest. Soil samples were collected at harvest and analyzed for chemical and physical properties. The relationship between maize yield, soil properties and Ky were determined using correlation analysis. Results from the study showed that the sensitivity of maize crops to water stress was greater than one 1 but reduced in soil treated with biochar compared to those without biochar. Ky under the unamended plot was 1.64 and reduced to 1.52 when applied with biochar. Ky was 1.45 in soil amended with only inorganic fertilizer and reduced to 1.27 when co-applied with biochar. Biochar decreased water depletion by maize, with the highest reduction in soil water depletion occurring in treatments that received the least water. A significant (P < 0.05) correlation between Ky and the soil properties showed that the soil chemical (Nitrogen, Phosphorus and Potassium) properties are primarily responsible for the reduced sensitivity of maize yield to water stress.

Suggested Citation

  • Babalola, Toju Esther & Adabembe, Bolaji Adelanke & Faloye, Oluwaseun Temitope, 2022. "Water use - yield relationship of maize as influenced by biochar and inorganic fertilizer applications in a tropical sandy clay loam soil," Agricultural Water Management, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003481
    DOI: 10.1016/j.agwat.2022.107801
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422003481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    3. Enujeke, E.C., 2013. "Effects of Variety and Spacing on Growth Characters of Hybrid Maize," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 3(05), pages 1-15, May.
    4. Ko, Jonghan & Piccinni, Giovanni, 2009. "Corn yield responses under crop evapotranspiration-based irrigation management," Agricultural Water Management, Elsevier, vol. 96(5), pages 799-808, May.
    5. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    6. Igbadun, Henry E. & Ramalan, A.A. & Oiganji, Ezekiel, 2012. "Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria," Agricultural Water Management, Elsevier, vol. 109(C), pages 162-169.
    7. Er-Raki, S. & Chehbouni, A. & Guemouria, N. & Duchemin, B. & Ezzahar, J. & Hadria, R., 2007. "Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region," Agricultural Water Management, Elsevier, vol. 87(1), pages 41-54, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Pengyan & Liu, Jiangzhou & Wang, Maodong & Zhang, Haocheng & Yang, Nan & Ma, Jing & Cai, Huanjie, 2024. "Effects of irrigation and fertilization with biochar on the growth, yield, and water/nitrogen use of maize on the Guanzhong Plain, China," Agricultural Water Management, Elsevier, vol. 295(C).
    2. Ying Wang & Shudong Zhou & Guanghui Jiang, 2023. "Can the Application of Environmentally Friendly Fertilisers Reduce Agricultural Labour Input? Empirical Evidence from Peanut Farmers in China," Sustainability, MDPI, vol. 15(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yufeng & Kang, Shaozhong & Li, Fusheng & Zhang, Xiaotao, 2021. "Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Gheysari, Mahdi & Sadeghi, Sayed-Hossein & Loescher, Henry W. & Amiri, Samia & Zareian, Mohammad Javad & Majidi, Mohammad M. & Asgarinia, Parvaneh & Payero, Jose O., 2017. "Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize," Agricultural Water Management, Elsevier, vol. 182(C), pages 126-138.
    3. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    4. Iqbal, M. Anjum & Bodner, G. & Heng, L.K. & Eitzinger, J. & Hassan, A., 2010. "Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan," Agricultural Water Management, Elsevier, vol. 97(5), pages 731-737, May.
    5. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    6. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    8. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    9. Carlos Bautista-Capetillo & Hugo Márquez-Villagrana & Anuard Pacheco-Guerrero & Julián González-Trinidad & Hugo Júnez-Ferreira & Manuel Zavala-Trejo, 2018. "Cropping System Diversification: Water Consumption against Crop Production," Sustainability, MDPI, vol. 10(7), pages 1-11, June.
    10. Wu, Hui & Yue, Qiong & Guo, Ping & Xu, Xiaoyu & Huang, Xi, 2022. "Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules," Agricultural Water Management, Elsevier, vol. 266(C).
    11. Assefa, Shibeshi & Biazin, Birhanu & Muluneh, Alemayehu & Yimer, Fantaw & Haileslassie, Amare, 2016. "Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia," Agricultural Water Management, Elsevier, vol. 178(C), pages 325-334.
    12. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    13. Abdul Malik & Abdul Sattar Shakir & Muhammad Ajmal & Muhammad Jamal Khan & Taj Ali Khan, 2017. "Assessment of AquaCrop Model in Simulating Sugar Beet Canopy Cover, Biomass and Root Yield under Different Irrigation and Field Management Practices in Semi-Arid Regions of Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4275-4292, October.
    14. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    15. Xiangxiang, Wang & Quanjiu, Wang & Jun, Fan & Qiuping, Fu, 2013. "Evaluation of the AquaCrop model for simulating the impact of water deficits and different irrigation regimes on the biomass and yield of winter wheat grown on China's Loess Plateau," Agricultural Water Management, Elsevier, vol. 129(C), pages 95-104.
    16. Kiani, Mina & Gheysari, Mahdi & Mostafazadeh-Fard, Behrouz & Majidi, Mohammad Mahdi & Karchani, Kazem & Hoogenboom, Gerrit, 2016. "Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region," Agricultural Water Management, Elsevier, vol. 171(C), pages 162-172.
    17. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.
    18. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.
    19. Kögler, F. & Söffker, D., 2017. "Water (stress) models and deficit irrigation: System-theoretical description and causality mapping," Ecological Modelling, Elsevier, vol. 361(C), pages 135-156.
    20. Yang, Chenyao & Fraga, Helder & Ieperen, Wim Van & Santos, João Andrade, 2017. "Assessment of irrigated maize yield response to climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 184(C), pages 178-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.