IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v68y2022i6id522-2021-pse.html
   My bibliography  Save this article

Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil

Author

Listed:
  • Zenghui Sun

    (Shaanxi Provincial Land Engineering Construction Group Co., Xi'an, P.R. China
    Collegeof Life Sciences, Yulin University, Yulin, P.R. China
    Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural and Resources of China, Xi'an, P.R. China)

  • Ya Hu

    (Shaanxi Provincial Land Engineering Construction Group Co., Xi'an, P.R. China
    Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural and Resources of China, Xi'an, P.R. China)

  • Lei Shi

    (Shaanxi Provincial Land Engineering Construction Group Co., Xi'an, P.R. China
    Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural and Resources of China, Xi'an, P.R. China)

  • Gang Li

    (Shaanxi Provincial Land Engineering Construction Group Co., Xi'an, P.R. China
    Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural and Resources of China, Xi'an, P.R. China)

  • Zhe Pang

    (Shaanxi Provincial Land Engineering Construction Group Co., Xi'an, P.R. China
    Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural and Resources of China, Xi'an, P.R. China)

  • Siqi Liu

    (Shaanxi Provincial Land Engineering Construction Group Co., Xi'an, P.R. China
    Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural and Resources of China, Xi'an, P.R. China)

  • Yamiao Chen

    (Shaanxi Provincial Land Engineering Construction Group Co., Xi'an, P.R. China
    Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural and Resources of China, Xi'an, P.R. China)

  • Baobao Jia

    (Shaanxi Tourism Group Co., Ltd, Xi'an, P.R. China)

Abstract

Improved soil properties are commonly reported benefits of adding biochar to agriculture soils. To investigate the range of biochar's effects on soil chemical properties (e.g., soil pH, electrical conductivity (EC), cation exchange capacity (CEC), soil organic carbon (SOC), soil total carbon (TC), and soil carbon-nitrogen ratio (C:N ratio)) in response to varied experimental conditions, a meta-analysis was conducted on previously published results. The results showed that the effect of biochar on soil chemical properties varied depending on management conditions, soil properties, biochar pyrolysis conditions, and biochar properties. The effect size (Hedges'd) of the biochar was greatest for SOC (0.50), the C:N ratio of soil (0.44), soil pH (0.39), TC (0.35), EC (0.21), and CEC (0.20). Among the various factors examined by aggregated boosted tree analysis, the effects of biochar on soil chemical properties were largely explained by the biochar application rate, initial soil pH, and soil sand content. In conclusion, our study suggests that improving soil chemical properties by adding biochar not only requires consideration of biochar application rates and chemical properties but also the local soil environmental factors, especially soil initial pH and sand content of the soil, should be considered.

Suggested Citation

  • Zenghui Sun & Ya Hu & Lei Shi & Gang Li & Zhe Pang & Siqi Liu & Yamiao Chen & Baobao Jia, 2022. "Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(6), pages 272-289.
  • Handle: RePEc:caa:jnlpse:v:68:y:2022:i:6:id:522-2021-pse
    DOI: 10.17221/522/2021-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/522/2021-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/522/2021-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/522/2021-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faloye, O.T. & Alatise, M.O. & Ajayi, A.E. & Ewulo, B.S., 2019. "Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation," Agricultural Water Management, Elsevier, vol. 217(C), pages 165-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariela Stoykova & Irena Atanassova & Maya Benkova & Tsetska Simeonova & Lyuba Nenova & Milena Harizanova & Milchena Atsenova, 2024. "Positive Effect of Biochar Application on Soil Properties: Solubility and Speciation of Heavy Metals in Non-Acidic Contaminated Soils near a Steel Metallurgical Plant in Southeastern Europe," Sustainability, MDPI, vol. 16(16), pages 1-18, August.
    2. Haiyan Liang & Liyu Yang & Qi Wu & Liang Yin & Cuiping Meng & Pu Shen, 2022. "Exogenous glucose modulated the diversity of soil nitrogen-related bacteria and promoted the nitrogen absorption and utilisation of peanut," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(12), pages 560-571.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    2. Zhang, Cong & Huang, Xian & Zhang, Xingwei & Wan, Li & Wang, Zhenhong, 2021. "Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Liu, Xuezhi & Manevski, Kiril & Liu, Fulai & Andersen, Mathias Neumann, 2022. "Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Mannan, M.A. & Mia, Shamim & Halder, Eshita & Dijkstra, Feike A., 2021. "Biochar application rate does not improve plant water availability in soybean under drought stress," Agricultural Water Management, Elsevier, vol. 253(C).
    5. Zhang, Pengyan & Liu, Jiangzhou & Wang, Maodong & Zhang, Haocheng & Yang, Nan & Ma, Jing & Cai, Huanjie, 2024. "Effects of irrigation and fertilization with biochar on the growth, yield, and water/nitrogen use of maize on the Guanzhong Plain, China," Agricultural Water Management, Elsevier, vol. 295(C).
    6. Gao, Jia & Zhang, Yingjun & Xu, Chenchen & Wang, Pu & Huang, Shoubing & Lv, Yanjie, 2024. "Enhancing spatial and temporal coordination of soil water and root growth to improve maize (Zea mays L.) yield," Agricultural Water Management, Elsevier, vol. 294(C).
    7. Wei Huang & Yangwen Jia & Cunwen Niu & Hexi Zhang & Yongtao Wang & Cheng Feng, 2024. "Effects of Carbon-Based Modified Materials on Soil Water and Fertilizer Retention and Pollution Control in Rice Root Zone," Sustainability, MDPI, vol. 16(16), pages 1-17, August.
    8. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng & Lu, Junsheng, 2022. "Quantifying nutrient stoichiometry and radiation use efficiency of two maize cultivars under various water and fertilizer management practices in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    10. Jiaxin Wang & Xinlin He & Ping Gong & Danqi Zhao & Yao Zhang & Zonglan Wang & Jingrui Zhang, 2022. "Optimization of a Water-Saving and Fertilizer-Saving Model for Enhancing Xinjiang Korla Fragrant Pear Yield, Quality, and Net Profits under Water and Fertilizer Coupling," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    11. Zhang, Chuan & Li, Xinyu & Yan, Haofang & Ullah, Ikram & Zuo, Zhiyu & Li, Lanlan & Yu, Jianjun, 2020. "Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Ke, Zengming & Liu, Xiaoli & Ma, Lihui & Feng, Zhe & Tu, Wen & Dong, Qin’ge & Jiao, Feng & Wang, Zhanli, 2021. "Rainstorm events increase risk of soil salinization in a loess hilly region of China," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Guo, Ru & Qian, Rui & Du, Luning & Sun, Weili & Wang, Jinjin & Cai, Tie & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong & Chen, Xiaoli, 2024. "Straw-derived biochar optimizes water consumption, shoot and root characteristics to improve water productivity of maize under reduced nitrogen," Agricultural Water Management, Elsevier, vol. 294(C).
    14. Jiao, Fengli & Ding, Risheng & Du, Taisheng & Kang, Jian & Tong, Ling & Gao, Jia & Shao, Jie, 2024. "Multi-growth stage regulated deficit irrigation improves maize water productivity in an arid region of China," Agricultural Water Management, Elsevier, vol. 297(C).
    15. Peng, Manman & Han, Wenting & Li, Chaoqun & Li, Guang & Yao, Xiaomin & Zhang, Mengfei, 2021. "Diurnal and seasonal CO2 exchange and yield of maize cropland under different irrigation treatments in semiarid Inner Mongolia," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Sun, Xiaolei & Yang, Xiaosong & Hu, Zhengyi & Liu, Fulai & Xie, Zijian & Li, Songyan & Wang, Guoxi & Li, Meng & Sun, Zheng & Bol, Roland, 2024. "Biochar effects on soil nitrogen retention, leaching and yield of perennial citron daylily under three irrigation regimes," Agricultural Water Management, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:68:y:2022:i:6:id:522-2021-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.