IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v3y2020i4d10.1038_s41893-020-0500-2.html
   My bibliography  Save this article

Conservation agriculture for sustainable intensification in South Asia

Author

Listed:
  • Mangi Lal Jat

    (International Maize and Wheat Improvement Center (CIMMYT))

  • Debashis Chakraborty

    (ICAR-Indian Agricultural Research Institute)

  • Jagdish Kumar Ladha

    (University of California)

  • Dharamvir Singh Rana

    (International Rice Research Institute (IRRI))

  • Mahesh Kumar Gathala

    (International Maize and Wheat Improvement Center (CIMMYT))

  • Andrew McDonald

    (Cornell University)

  • Bruno Gerard

    (International Maize and Wheat Improvement Center (CIMMYT), El Batan)

Abstract

Agriculture’s contribution to the Sustainable Development Goals requires climate-smart and profitable farm innovations. In the past decade, attention has been given to conservation agriculture as a ‘sustainable intensification’ strategy, although a lack of evidence-based consensus on the merits of conservation agriculture prevails in the context of intensive smallholder farming in South Asia. A meta-analysis using 9,686 paired site–year comparisons representing different indicators of cropping-system performance suggest significant (P

Suggested Citation

  • Mangi Lal Jat & Debashis Chakraborty & Jagdish Kumar Ladha & Dharamvir Singh Rana & Mahesh Kumar Gathala & Andrew McDonald & Bruno Gerard, 2020. "Conservation agriculture for sustainable intensification in South Asia," Nature Sustainability, Nature, vol. 3(4), pages 336-343, April.
  • Handle: RePEc:nat:natsus:v:3:y:2020:i:4:d:10.1038_s41893-020-0500-2
    DOI: 10.1038/s41893-020-0500-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-020-0500-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-020-0500-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Liangang & Wei, Xi & Wang, Chunying & Zhao, Rongqin, 2023. "Plastic film mulching significantly boosts crop production and water use efficiency but not evapotranspiration in China," Agricultural Water Management, Elsevier, vol. 275(C).
    2. Singh, Pritpal & Singh, Gurdeep & Gupta, Alok & Sodhi, Gurjinder Pal Singh, 2023. "Data envelopment analysis based energy optimization for improving energy efficiency in wheat established following rice residue management in rice-wheat cropping system," Energy, Elsevier, vol. 284(C).
    3. Ankit Saini & Sandeep Manuja & Suresh Kumar & Aqsa Hafeez & Baber Ali & Peter Poczai, 2022. "Impact of Cultivation Practices and Varieties on Productivity, Profitability, and Nutrient Uptake of Rice ( Oryza sativa L.) and Wheat ( Triticum aestivum L.) Cropping System in India," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    4. Dutta, S.K. & Laing, Alison & Kumar, Sanjay & Shambhavi, Shweta & Kumar, Sunil & Kumar, Birender & Verma, D.K. & Kumar, Arun & Singh, Ravi Gopal & Gathala, Mahesh, 2023. "Sustainability, productivity, profitability and nutritional diversity of six cropping systems under conservation agriculture: A long term study in eastern India," Agricultural Systems, Elsevier, vol. 207(C).
    5. Komarek, Adam M. & Thierfelder, Christian & Steward, Peter R., 2021. "Conservation agriculture improves adaptive capacity of cropping systems to climate stress in Malawi," Agricultural Systems, Elsevier, vol. 190(C).
    6. S. S. Tabriz & M. A. Kader & M. Rokonuzzaman & M. S. Hossen & M. A. Awal, 2021. "Prospects and challenges of conservation agriculture in Bangladesh for sustainable sugarcane cultivation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15667-15694, November.
    7. Gatto, Marcel & Balie, Jean & Hareau, Guy, 2021. "The Future of Sustainable Intensification of Rice-Potato Agri-Food Systems in Asia," SocArXiv 3ba5x, Center for Open Science.
    8. repec:ags:aaea22:335953 is not listed on IDEAS
    9. Parihar, C.M. & Meena, B.R. & Nayak, Hari Sankar & Patra, K. & Sena, D.R. & Singh, Raj & Jat, S.L. & Sharma, D.K. & Mahala, D.M. & Patra, S. & Rupesh, & Rathi, N. & Choudhary, M. & Jat, M.L. & Abdalla, 2022. "Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus," Energy, Elsevier, vol. 254(PB).
    10. Hongyu Wang & Xiaolei Wang & Apurbo Sarkar & Lu Qian, 2021. "Evaluating the Impacts of Smallholder Farmer’s Participation in Modern Agricultural Value Chain Tactics for Facilitating Poverty Alleviation—A Case Study of Kiwifruit Industry in Shaanxi, China," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
    11. Aman Ullah & Ahmad Nawaz & Muhammad Farooq & Kadambot H. M. Siddique, 2021. "Agricultural Innovation and Sustainable Development: A Case Study of Rice–Wheat Cropping Systems in South Asia," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    12. Anantha, K.H. & Garg, Kaushal K. & Barron, Jennie & Dixit, Sreenath & Venkataradha, A. & Singh, Ramesh & Whitbread, Anthony M., 2021. "Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia," Agricultural Systems, Elsevier, vol. 194(C).
    13. Han, Jichong & Zhang, Zhao & Luo, Yuchuan & Cao, Juan & Zhang, Liangliang & Zhuang, Huimin & Cheng, Fei & Zhang, Jing & Tao, Fulu, 2022. "Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020," Agricultural Systems, Elsevier, vol. 200(C).
    14. Sun, Jingxin & Sun, Shikun & Yin, Yali & Wang, Yubao & Zhao, Jinfeng & Tang, Yihe & Wu, Pute, 2024. "Decoupling trend and drivers between grain water‑carbon footprint and economy-ecology development in China," Agricultural Systems, Elsevier, vol. 217(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:3:y:2020:i:4:d:10.1038_s41893-020-0500-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.