IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v221y2019icp211-219.html
   My bibliography  Save this article

Determination of optimum irrigation and effect of deficit irrigation strategies on yield and disease rate of peanut irrigated with drip system in Eastern Mediterranean

Author

Listed:
  • Sezen, S. Metin
  • Yucel, Seral
  • Tekin, Servet
  • Yıldız, Mehmet

Abstract

This study aimed at examining the effects of different irrigation regimes (amount and frequency) on yield, water use, water productivity (WP), irrigation water productivity (IWP) and disease rate of drip irrigated peanut (Arachis hypogaea) during the 2014 and 2015 seasons in the Eastern Mediterranean region of Turkey. The treatments consisted of combinations of 3 irrigation frequencies (IF) (IF1: 25 mm; IF2: 50 mm; IF3: 75 mm of cumulative pan evaporation (CPE)), and 7 irrigation water levels (WL1 = 0.50, WL2 = 0.75, WL3 = 1.00 and WL4 = 1.25). WL1, WL2, WL3 and WL4 treatments received 50, 75, 100 and 125 of CPE. In addition, partial root drying (PRD) treatments WL5 = PRD50, WL6 = PRD75 and WL7 = PRD100 treatments were considered. They received 50, 75 and 100% of WL3 treatment from alternate laterals, respectively These 21 treatment combinations were arranged and analysed in a split-plot design with 4 replications. The main plots and subplots were established to irrigation frequencies (IF1, IF2 and IF3) and levels (WL1, WL2, WL3, WL4, WL5, WL6 and WL7). Both IF and WL were observed to have significantly influenced peanut yields at 1% level. In each of the experimental years, the largest and the smallest average peanut yields were acquired from the IF2WL4 and IF3WL1 treatments, respectively. Results indicated that peanut crops under PRD produced higher than those under deficit irrigation upon usage of the same volume of water amount. Significant linear relationships between irrigation – yield and evapotranspiration – yield were obtained during different irrigation frequencies in each season. The yield response factor (ky) was 0.58–0.65 in IF1, 0.65–0.70 in IF2 and 0.90–0.91 in IF3 plots in both years. Water stress raised the disease emergence in peanut markedly in the experimental years. The WP and IWP of PRD peanut were significantly greater than full irrigation and deficit irrigation (DI) treatments in both growing seasons, which demonstrated that limiting water did not reduce WP values. We conclude that DI treatments resulted in importantly lower WP (p≤ 0.05) than PRD treatments in both years in spite of applying the same volume of water.

Suggested Citation

  • Sezen, S. Metin & Yucel, Seral & Tekin, Servet & Yıldız, Mehmet, 2019. "Determination of optimum irrigation and effect of deficit irrigation strategies on yield and disease rate of peanut irrigated with drip system in Eastern Mediterranean," Agricultural Water Management, Elsevier, vol. 221(C), pages 211-219.
  • Handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:211-219
    DOI: 10.1016/j.agwat.2019.04.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419302902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.04.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reddy, C. Raghava & Reddy, S. Rami, 1993. "Scheduling irrigation for peanuts with variable amounts of available water," Agricultural Water Management, Elsevier, vol. 23(1), pages 1-9, March.
    2. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    3. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    4. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping, 2006. "Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain," Agricultural Water Management, Elsevier, vol. 79(3), pages 248-264, February.
    5. Kang, Shaozhong & Liang, Zongsuo & Hu, Wei & Zhang, Jianhua, 1998. "Water use efficiency of controlled alternate irrigation on root-divided maize plants," Agricultural Water Management, Elsevier, vol. 38(1), pages 69-76, October.
    6. Topak, Ramazan & Acar, Bilal & Uyanöz, Refik & Ceyhan, Ercan, 2016. "Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 176(C), pages 180-190.
    7. Perry, Chris, 2011. "Accounting for water use: Terminology and implications for saving water and increasing production," Agricultural Water Management, Elsevier, vol. 98(12), pages 1840-1846, October.
    8. Zegbe, J. A. & Behboudian, M. H. & Clothier, B. E., 2004. "Partial rootzone drying is a feasible option for irrigating processing tomatoes," Agricultural Water Management, Elsevier, vol. 68(3), pages 195-206, August.
    9. Sezen, S. Metin & Yazar, Attila & Daşgan, Yıldız & Yucel, Seral & Akyıldız, Asiye & Tekin, Servet & Akhoundnejad, Yelderem, 2014. "Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes," Agricultural Water Management, Elsevier, vol. 143(C), pages 59-70.
    10. Jain, L. L. & Panda, R. K. & Sharma, C. P., 1997. "Water stress response function for groundnut (Arachis hypogaea L.)," Agricultural Water Management, Elsevier, vol. 32(2), pages 197-209, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Zhenyu & Zhang, Junxiao & Ren, Dongyang & Hu, Jiaqi & Xia, Guimin & Pan, Baozhu, 2022. "Modeling and assessing water and nitrogen use and crop growth of peanut in semi-arid areas of Northeast China," Agricultural Water Management, Elsevier, vol. 267(C).
    2. Liu, Cong & Li, Kaiwei & Zhang, Jiquan & Guga, Suri & Wang, Rui & Liu, Xingpeng & Tong, Zhijun, 2023. "Dynamic risk assessment of waterlogging disaster to spring peanut (Arachis hypogaea L.) in Henan Province, China," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Li-Song & Li, Yan & Zhang, Jianhua, 2010. "Partial rootzone irrigation increases water use efficiency, maintains yield and enhances economic profit of cotton in arid area," Agricultural Water Management, Elsevier, vol. 97(10), pages 1527-1533, October.
    2. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    4. Çolak, Yeşim Bozkurt & Yazar, Attila & Gönen, Engin & Eroğlu, E. Çağlar, 2018. "Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns," Agricultural Water Management, Elsevier, vol. 206(C), pages 165-175.
    5. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.
    6. Kashyap, P. S. & Panda, R. K., 2003. "Effect of irrigation scheduling on potato crop parameters under water stressed conditions," Agricultural Water Management, Elsevier, vol. 59(1), pages 49-66, March.
    7. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    8. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    9. Mandal, K.G. & Thakur, A.K. & Mohanty, S., 2019. "Paired-row planting and furrow irrigation increased light interception, pod yield and water use efficiency of groundnut in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 213(C), pages 968-977.
    10. Gencoglan, Cafer & Altunbey, Hasibe & Gencoglan, Serpil, 2006. "Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation," Agricultural Water Management, Elsevier, vol. 84(3), pages 274-280, August.
    11. Barrios-Masias, Felipe H. & Jackson, Louise E., 2016. "Increasing the effective use of water in processing tomatoes through alternate furrow irrigation without a yield decrease," Agricultural Water Management, Elsevier, vol. 177(C), pages 107-117.
    12. Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
    13. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    14. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Du, Taisheng & Kang, Shaozhong & Sun, Jingsheng & Zhang, Xiying & Zhang, Jianhua, 2010. "An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China," Agricultural Water Management, Elsevier, vol. 97(1), pages 66-74, January.
    17. Yang, Chenyao & Fraga, Helder & Ieperen, Wim Van & Santos, João Andrade, 2017. "Assessment of irrigated maize yield response to climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 184(C), pages 178-190.
    18. Gheysari, Mahdi & Sadeghi, Sayed-Hossein & Loescher, Henry W. & Amiri, Samia & Zareian, Mohammad Javad & Majidi, Mohammad M. & Asgarinia, Parvaneh & Payero, Jose O., 2017. "Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize," Agricultural Water Management, Elsevier, vol. 182(C), pages 126-138.
    19. Abou Kheira, Abdrabbo A., 2009. "Macromanagement of deficit-irrigated peanut with sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 96(10), pages 1409-1420, October.
    20. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:211-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.