IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v293y2024ics0378377424000428.html
   My bibliography  Save this article

Evaluating spatial and temporal variations of soil water, heat, and salt under autumn irrigation in the Hetao Irrigation District based on distributed SHAW model

Author

Listed:
  • Fu, Chong
  • Xue, Jing
  • Chen, Junfeng
  • Cui, Lihong
  • Wang, Hui

Abstract

The Hetao Irrigation District (HID) is a typical seasonal frozen soil region in Inner Mongolia. Soil salinization is directly linked to the freeze-thaw cycle of soil water-heat-salt transport. Autumn irrigation is critical for water storage and salt washing, which can effectively prevent and control soil salination. However, less attention has been given to the spatial and temporal variations of soil moisture, heat, and salt throughout the freeze-thaw phase under autumn irrigation at the HID regional scale. Therefore, the distributed SHAW model was constructed, calibrated, and validated, and then used to simulate soil water-heat-salt transport during the freeze-thaw periods under autumn irrigation in the HID from 2000 to 2017. Subsequently, the suitability of planting spring wheat, spring maize and sunflowers was quantitatively determined based on the soil salt content at the time of spring sowing. The results indicated that the distributed SHAW model was effective in simulating the soil water-heat-salt dynamics in the HID. Within the year of freeze-thaw period, the 0–40 cm soil temperature and water content exhibited a similar “plunge-stabilization-recovery” trend, the 0–40 cm soil salinity during the ablation period increased by 5.68% compared to the initial freeze period. During the freeze-thaw period from 2000 to 2017, soil water content showed an increasing trend, soil temperature variability was stable, and soil salinity was desalinated. The spatial distribution of soil water content during the freeze-thaw period was higher in the east than in the west, ranging from 0.07 to 0.13 cm3/cm3. The soil temperature was relatively obvious, ranging from −0.8 to −2.2 ℃, with high soil temperature mainly concentrated in Dengkou county (DK). The soil salinity varied significantly, with most cultivated land falling into the lightly salted soil category with salinity of 2.1 - 2.3 g/kg, while all soils had less than 1.5 g/kg salinity and were non-salinized soils in Wulateqianqi (WQQ). Under existing autumn irrigation, the area suitable for spring wheat cultivation was mainly concentrated in WQQ, accounting for approximately 28.36%; the areas suitable for planting spring maize were mainly in DK, the northern part of Hangqinhouqi (HH), Wuyuan county (WY), and WQQ, accounting for approximately 76.09%; all the cultivated land was satisfied with sunflower cultivation in the HID. The research results provide valuable references for adjusting and optimizing autumn irrigation and cropping patterns in the HID.

Suggested Citation

  • Fu, Chong & Xue, Jing & Chen, Junfeng & Cui, Lihong & Wang, Hui, 2024. "Evaluating spatial and temporal variations of soil water, heat, and salt under autumn irrigation in the Hetao Irrigation District based on distributed SHAW model," Agricultural Water Management, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000428
    DOI: 10.1016/j.agwat.2024.108707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minacapilli, M. & Iovino, M. & D'Urso, G., 2008. "A distributed agro-hydrological model for irrigation water demand assessment," Agricultural Water Management, Elsevier, vol. 95(2), pages 123-132, February.
    2. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    4. Mao, Wei & Zhu, Yan & Wu, Jingwei & Ye, Ming & Yang, Jinzhong, 2022. "Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Wang, Wanning & Wang, Weishu & Wang, Pu & Wang, Xianghao & Wang, Liwen & Wang, Chaozi & Zhang, Chenglong & Huo, Zailin, 2023. "Impact of straw return on soil temperature and water during the freeze-thaw period," Agricultural Water Management, Elsevier, vol. 282(C).
    6. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    7. Sun, Guanfang & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Qu, Zhongyi & Mao, Wei & Wu, Jingwei, 2019. "Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area," Agricultural Water Management, Elsevier, vol. 213(C), pages 486-498.
    8. Droogers, P. & Bastiaanssen, W. G. M. & Beyazgul, M. & Kayam, Y. & Kite, G. W. & Murray-Rust, H., 2000. "Distributed agro-hydrological modeling of an irrigation system in western Turkey," Agricultural Water Management, Elsevier, vol. 43(2), pages 183-202, March.
    9. Xue, Jing & Ren, Li, 2016. "Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 350-365.
    10. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    3. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    4. Li, Pei & Ren, Li, 2023. "Evaluating the differences in irrigation methods for winter wheat under limited irrigation quotas in the water-food-economy nexus in the North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Yin Zhang & Qingfeng Miao & Ruiping Li & Minghai Sun & Xinmin Yang & Wei Wang & Yongping Huang & Weiying Feng, 2024. "Distribution and Variation of Soil Water and Salt before and after Autumn Irrigation," Land, MDPI, vol. 13(6), pages 1-18, May.
    6. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    7. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Minacapilli, M. & Iovino, M. & D'Urso, G., 2008. "A distributed agro-hydrological model for irrigation water demand assessment," Agricultural Water Management, Elsevier, vol. 95(2), pages 123-132, February.
    9. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
    10. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    11. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    13. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    14. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    15. Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    16. Han, Congying & Zhang, Baozhong & Chen, He & Wei, Zheng & Liu, Yu, 2019. "Spatially distributed crop model based on remote sensing," Agricultural Water Management, Elsevier, vol. 218(C), pages 165-173.
    17. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    18. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    19. Abdol Rassoul Zarei & Ali Shabani & Mohammad Reza Mahmoudi, 2020. "Evaluation of the Influence of Occurrence Time of Drought on the Annual Yield of Rain-Fed Winter Wheat Using Backward Multiple Generalized Estimation Equation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2911-2931, July.
    20. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.