IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v208y2018icp67-82.html
   My bibliography  Save this article

An application of the water footprint assessment to optimize production of crops irrigated with saline water: A scenario assessment with HYDRUS

Author

Listed:
  • Karandish, Fatemeh
  • Šimůnek, Jiří

Abstract

Agriculture, due to a growing scarcity of fresh water resources, often uses low-quality waters for irrigation, such as saline waters. However, unmanaged applications of such waters may have negative environmental and economic consequences. Based on the concept of the water footprint (WF), a measure of the consumptive and degradative water use, the field-calibrated and validated HYDRUS (2D/3D) model was applied to find optimal management scenarios (from 1980 different evaluated scenarios). These scenarios were defined as a combination of different salinity rates (SR), irrigation levels (IL, the ratio of an actual irrigation water deth and a full irrigation water depth), nitrogen fertilization rates (NR), and two water-saving irrigation strategies, deficit irrigation (DI) and partial root-zone drying (PRD). The consumptive WF was defined as the crop water consumption divided by the crop yield. The grey WF was calculated for the N fertilizer and defined as the volume of freshwater required to dilute nitrogen (N) in recharge so as to meet ambient water quality standards. Simulated components of water and solute dynamics were used to calculate criteria indices, which were divided into two groups: (a) environmental indices, including the degradative grey water footprint (GWF) and the apparent N recovery rate efficiency (ARE), and (b) economic indices, including economic water (EWP) and land (ELP) productivities. While significant improvements of 3.9–59.2%, 0.1–165.8%, and 0.01–166.5% in ARE, EWP, and ELP, respectively, were obtained when NR varied within the range of 0–200 kg ha−1, changes in these indices were relatively minor when NR was higher than 200 kg ha−1. At a given NR, GWF tends to increase considerably by up to 180% when DI-crops are subject to low-intermediate salt (SR < 7 dS m−1) and water (IL > 70%) stresses. This is at the expense of up to a 55% reduction in ELP and up to a 120% increase in EWP. With N uptake 0.2–17.3% higher, PRD seems to be a more viable agro-hydrological option than DI in reducing a pollutant load into regional aquifers as well as in sustaining farm economics. The entire analysis reveals that the PRD strategy with N-fertilization rates of 100-200 kg ha−1, a moderate salinity stress (SR < 5 dS m−1), and irrigation levels of 60–90% represents the best management scenario. It can be concluded that, while there is a substantial need for rescheduling irrigation and fertilization managements when crops are irrigated with saline waters, HYDRUS modeling may be a reliable alternative to extensive field investigations when determining the optimal agricultural management practices.

Suggested Citation

  • Karandish, Fatemeh & Šimůnek, Jiří, 2018. "An application of the water footprint assessment to optimize production of crops irrigated with saline water: A scenario assessment with HYDRUS," Agricultural Water Management, Elsevier, vol. 208(C), pages 67-82.
  • Handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:67-82
    DOI: 10.1016/j.agwat.2018.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418307753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yong & Šimůnek, Jirka & Zhang, Zhentin & Jing, Longfei & Ni, Lixiao, 2015. "Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 148(C), pages 213-222.
    2. Corwin, Dennis L. & Rhoades, James D. & Simunek, Jirka, 2007. "Leaching requirement for soil salinity control: Steady-state versus transient models," Agricultural Water Management, Elsevier, vol. 90(3), pages 165-180, June.
    3. Paredes, P. & Rodrigues, G.C. & Alves, I. & Pereira, L.S., 2014. "Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies," Agricultural Water Management, Elsevier, vol. 135(C), pages 27-39.
    4. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    5. Kirda, C. & Cetin, M. & Dasgan, Y. & Topcu, S. & Kaman, H. & Ekici, B. & Derici, M. R. & Ozguven, A. I., 2004. "Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation," Agricultural Water Management, Elsevier, vol. 69(3), pages 191-201, October.
    6. Hanson, Blaine R. & Simunek, Jirka & Hopmans, Jan W., 2006. "Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 102-113, November.
    7. Siyal, A.A. & Skaggs, T.H., 2009. "Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation," Agricultural Water Management, Elsevier, vol. 96(6), pages 893-904, June.
    8. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    9. Hu, Tiantian & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua, 2009. "Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize," Agricultural Water Management, Elsevier, vol. 96(2), pages 208-214, February.
    10. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    11. Crevoisier, D. & Popova, Z. & Mailhol, J.C. & Ruelle, P., 2008. "Assessment and simulation of water and nitrogen transfer under furrow irrigation," Agricultural Water Management, Elsevier, vol. 95(4), pages 354-366, April.
    12. Maite Aldaya & Pedro Martínez-Santos & M. Llamas, 2010. "Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 941-958, March.
    13. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    14. Ajdary, Khalil & Singh, D.K. & Singh, A.K. & Khanna, Manoj, 2007. "Modelling of nitrogen leaching from experimental onion field under drip fertigation," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 15-28, April.
    15. Sepaskhah, A. R. & Kamgar-Haghighi, A. A., 1997. "Water use and yields of sugarbeet grown under every-other-furrow irrigation with different irrigation intervals," Agricultural Water Management, Elsevier, vol. 34(1), pages 71-79, July.
    16. Doltra, J. & Muñoz, P., 2010. "Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models," Agricultural Water Management, Elsevier, vol. 97(2), pages 277-285, February.
    17. Payero, Jose O. & Melvin, Steven R. & Irmak, Suat & Tarkalson, David, 2006. "Yield response of corn to deficit irrigation in a semiarid climate," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 101-112, July.
    18. Wang, Huanyuan & Ju, Xiaotang & Wei, Yongping & Li, Baoguo & Zhao, Lulu & Hu, Kelin, 2010. "Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain," Agricultural Water Management, Elsevier, vol. 97(10), pages 1646-1654, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Khaleghi, Moazam & Hassanpour, Farzad & Karandish, Fatemeh & Shahnazari, Ali, 2020. "Integrating partial root-zone drying and saline water irrigation to sustain sunflower production in freshwater-scarce regions," Agricultural Water Management, Elsevier, vol. 234(C).
    3. Elbeltagi, Ahmed & Azad, Nasrin & Arshad, Arfan & Mohammed, Safwan & Mokhtar, Ali & Pande, Chaitanya & Etedali, Hadi Ramezani & Bhat, Shakeel Ahmad & Islam, Abu Reza Md. Towfiqul & Deng, Jinsong, 2021. "Applications of Gaussian process regression for predicting blue water footprint: Case study in Ad Daqahliyah, Egypt," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Thao, Touyee & Culumber, Catherine M. & Poret-Peterson, Amisha T. & Zuber, Cameron A. & Holtz, Brent A. & Gao, Suduan, 2024. "Evaluating the seasonal effects of whole orchard recycling on water movement and nitrogen retention for a newly established almond orchard: Simulation using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 299(C).
    5. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    6. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Xiulu Sun & Yizan Li & Marius Heinen & Henk Ritzema & Petra Hellegers & Jos van Dam, 2022. "Fertigation Strategies to Improve Water and Nitrogen Use Efficiency in Surface Irrigation System in the North China Plain," Agriculture, MDPI, vol. 13(1), pages 1-23, December.
    8. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    10. Che, Zheng & Wang, Jun & Li, Jiusheng, 2022. "Modeling strategies to balance salt leaching and nitrogen loss for drip irrigation with saline water in arid regions," Agricultural Water Management, Elsevier, vol. 274(C).
    11. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Hong, Yang, 2020. "Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt," Agricultural Water Management, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    2. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    3. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    4. Haghnazari, Farzad & Karandish, Fatemeh & Darzi-Naftchali, Abdullah & Šimůnek, Jiří, 2020. "Dynamic assessment of the impacts of global warming on nitrate losses from a subsurface-drained rainfed-canola field," Agricultural Water Management, Elsevier, vol. 242(C).
    5. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    6. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    7. Iqbal, Shahid & Guber, Andrey K. & Khan, Haroon Zaman, 2016. "Estimating nitrogen leaching losses after compost application in furrow irrigated soils of Pakistan using HYDRUS-2D software," Agricultural Water Management, Elsevier, vol. 168(C), pages 85-95.
    8. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.
    9. Khaleghi, Moazam & Hassanpour, Farzad & Karandish, Fatemeh & Shahnazari, Ali, 2020. "Integrating partial root-zone drying and saline water irrigation to sustain sunflower production in freshwater-scarce regions," Agricultural Water Management, Elsevier, vol. 234(C).
    10. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    11. Callau-Beyer, Ana Claudia & Mburu, Martin Mungai & Weßler, Caspar-Friedrich & Amer, Nasser & Corbel, Anne-Laure & Wittnebel, Mareille & Böttcher, Jürgen & Bachmann, Jörg & Stützel, Hartmut, 2024. "Effect of high frequency subsurface drip fertigation on plant growth and agronomic nitrogen use efficiency of red cabbage," Agricultural Water Management, Elsevier, vol. 297(C).
    12. Wang, Jun & Huang, Guanhua & Zhan, Hongbin & Mohanty, Binayak P. & Zheng, Jianhua & Huang, Quanzhong & Xu, Xu, 2014. "Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model," Agricultural Water Management, Elsevier, vol. 141(C), pages 10-22.
    13. Grecco, Katarina L. & Miranda, Jarbas H. de & Silveira, Laís K. & van Genuchten, Martinus Th., 2019. "HYDRUS-2D simulations of water and potassium movement in drip irrigated tropical soil container cultivated with sugarcane," Agricultural Water Management, Elsevier, vol. 221(C), pages 334-347.
    14. Bristow, Keith L. & Šimůnek, Jirka & Helalia, Sarah A. & Siyal, Altaf A., 2020. "Numerical simulations of the effects furrow surface conditions and fertilizer locations have on plant nitrogen and water use in furrow irrigated systems," Agricultural Water Management, Elsevier, vol. 232(C).
    15. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    16. Patanè, C. & Cosentino, S.L., 2010. "Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 97(1), pages 131-138, January.
    17. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    18. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    19. Liu, Chunye & Wang, Rui & Wang, Wene & Hu, Xiaotao & Cheng, Yong & Liu, Fulai, 2021. "Effect of fertilizer solution concentrations on filter clogging in drip fertigation systems," Agricultural Water Management, Elsevier, vol. 250(C).
    20. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:67-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.