Author
Listed:
- Ott, Thomas J.
- Majumdar, Sayantan
- Huntington, Justin L.
- Pearson, Christopher
- Bromley, Matt
- Minor, Blake A.
- ReVelle, Peter
- Morton, Charles G.
- Sueki, Sachiko
- Beamer, Jordan P.
- Jasoni, Richard L.
Abstract
Groundwater overdraft in the western United States has prompted water managers to develop groundwater management plans that include mandatory reporting of groundwater pumping (GP). However, most irrigation systems in this region are not equipped with irrigation water flow meters to record GP and performing quality control of the available metered GP data is difficult due to the scarcity of reliable secondary GP estimates. We hypothesize that Landsat-based actual evapotranspiration (ET) estimates from OpenET can be used to predict GP and aid in quality control of the metered GP data. The objectives of this study are to: 1) pair OpenET estimates of consumptive use (Net ET, i.e., actual ET less effective precipitation) and metered annual GP data from Diamond Valley, Nevada, and Harney Basin, Oregon; 2) evaluate linear regression and machine learning models to establish the GP vs Net ET relationship; and 3) compare GP estimates at the field- and basin-scales. Results from using a bootstrapping technique showed that the mean absolute errors and root mean square errors for field-scale GP depth are ∼11 % and ∼14 % across Diamond Valley and Harney Basin based on the OpenET ensemble mean, which showed the highest skill among all the OpenET ET models. Moreover, the regression models explained 50 %-70 % variance in GP depth and ∼90 % variance in GP volumes. Our GP volume estimates are also within 7 % and 17 % of the total reported and measured volumes in Diamond Valley and Harney Basin, respectively, and the estimated average irrigation efficiency of 87 % aligns with known center-pivot system efficiencies. Additionally, the OpenET ensemble proves to be useful for identifying discrepancies in metered GP data, which are subsequently flagged as outliers. Results from this study illustrate usefulness of satellite-based ET estimates for estimating GP and metered GP data quality control and have the potential to help estimate historical GP.
Suggested Citation
Ott, Thomas J. & Majumdar, Sayantan & Huntington, Justin L. & Pearson, Christopher & Bromley, Matt & Minor, Blake A. & ReVelle, Peter & Morton, Charles G. & Sueki, Sachiko & Beamer, Jordan P. & Jasoni, 2024.
"Toward field-scale groundwater pumping and improved groundwater management using remote sensing and climate data,"
Agricultural Water Management, Elsevier, vol. 302(C).
Handle:
RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003354
DOI: 10.1016/j.agwat.2024.109000
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003354. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.