IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v302y2024ics0378377424003305.html
   My bibliography  Save this article

Cocoa tree performance and yield are affected by seasonal rainfall reduction

Author

Listed:
  • Adet, Lucette
  • Rozendaal, Danaë M.A.
  • Zuidema, Pieter A.
  • Vaast, Philippe
  • Anten, Niels P.R.

Abstract

In West Africa, long dry spells are likely to become more frequent and intense as a result of global climate variability, which may significantly impact cocoa tree performance (i.e. morphology, physiology, growth and production), and asks for improved water management. Potassium (K) application may mitigate drought impacts on cocoa, yet knowledge on how shorter, drier wet seasons affect cocoa and on the potential mitigating effect of K application is limited. This study investigated the effects of reduced water availability via shelters and K application on cocoa leaf traits, root growth, reproductive dynamics and yield of cocoa trees in a 6-year old plantation. Two soil moisture levels and two K treatments were considered: a control (no shelter) and sheltered (67 % rainfall reduction) treatment, either with or without 200 kg ha−1 K application. Results indicated rain sheltering significantly decreased soil moisture by 9 %, root interceptions by 50 %, root mass density by ∼50 %, stomatal conductance (Gs) by ∼60 %, flush intensity by ∼70 %, leaf greenness ∼48 % and leaf size by ∼68 %. While individual pod mass remained unchanged, flower intensity, healthy cherelles, pod, and bean numbers per tree dropped, leading to a dry bean yield reduction from ∼2100 kg ha−1 to ∼1450 kg ha−1 (∼31 %). The beneficial impact of K application was primarily noticeable under control conditions, where it increased Gs, leaf size and greenness. Also, about 35 % of precipitation is intercepted by and directly evaporates from the cocoa canopy and thus never reaches the soil. Future agro-meteorological crop models need to take this into account. Overall, results indicate a strong negative effect of reducing water availability during the wet season on leaf physiology, pod production and cocoa yield. Yields were mostly reduced because of a lower number of pods and much less by an effect on individual pod size. However, K application may not mitigate drought effects and sustaining cocoa yield would require integrated water management.

Suggested Citation

  • Adet, Lucette & Rozendaal, Danaë M.A. & Zuidema, Pieter A. & Vaast, Philippe & Anten, Niels P.R., 2024. "Cocoa tree performance and yield are affected by seasonal rainfall reduction," Agricultural Water Management, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003305
    DOI: 10.1016/j.agwat.2024.108995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424003305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuidema, Pieter A. & Leffelaar, Peter A. & Gerritsma, Wouter & Mommer, Liesje & Anten, Niels P.R., 2005. "A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application," Agricultural Systems, Elsevier, vol. 84(2), pages 195-225, May.
    2. Luedeling, Eike & Smethurst, Philip J. & Baudron, Frédéric & Bayala, Jules & Huth, Neil I. & van Noordwijk, Meine & Ong, Chin K. & Mulia, Rachmat & Lusiana, Betha & Muthuri, Catherine & Sinclair, Ferg, 2016. "Field-scale modeling of tree–crop interactions: Challenges and development needs," Agricultural Systems, Elsevier, vol. 142(C), pages 51-69.
    3. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    4. Christian Dupraz & Kevin J. Wolz & Isabelle Lecomte & Grégoire Talbot & Grégoire Vincent & Rachmat Mulia & François Bussière & Harry Ozier-Lafontaine & Sitraka Andrianarisoa & Nick Jackson & Gerry Law, 2019. "Hi-sAFe: A 3D Agroforestry Model for Integrating Dynamic Tree–Crop Interactions," Sustainability, MDPI, vol. 11(8), pages 1-25, April.
    5. De Almeida, Jenny & Tezara, Wilmer & Herrera, Ana, 2016. "Physiological responses to drought and experimental water deficit and waterlogging of four clones of cacao (Theobroma cacao L.) selected for cultivation in Venezuela," Agricultural Water Management, Elsevier, vol. 171(C), pages 80-88.
    6. Adet, Lucette & Rozendaal, Danaë M.A. & Tapi, Arthur & Zuidema, Pieter A. & Vaast, Philippe & Anten, Niels P.R., 2024. "Negative effects of water deficit on cocoa tree yield are partially mitigated by irrigation and potassium application," Agricultural Water Management, Elsevier, vol. 296(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saputra, Danny Dwi & Khasanah, Ni'matul & Sari, Rika Ratna & van Noordwijk, Meine, 2024. "Avoidance of tree-site mismatching of modelled cacao production systems across climatic zones: Roots for multifunctionality," Agricultural Systems, Elsevier, vol. 216(C).
    2. Bosi, Cristiam & Huth, Neil Ian & Sentelhas, Paulo Cesar & Pezzopane, José Ricardo Macedo, 2022. "APSIM model performance in simulating Piatã palisade grass growth and soil water in different positions of a silvopastoral system with eucalyptus," Agricultural Systems, Elsevier, vol. 195(C).
    3. Rahn, Eric & Vaast, Philippe & Läderach, Peter & van Asten, Piet & Jassogne, Laurence & Ghazoul, Jaboury, 2018. "Exploring adaptation strategies of coffee production to climate change using a process-based model," Ecological Modelling, Elsevier, vol. 371(C), pages 76-89.
    4. Paut, Raphaël & Sabatier, Rodolphe & Dufils, Arnaud & Tchamitchian, Marc, 2021. "How to reconcile short-term and long-term objectives in mixed farms? A dynamic model application to mixed fruit tree - vegetable systems," Agricultural Systems, Elsevier, vol. 187(C).
    5. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    6. Abdulai, Issaka & Hoffmann, Munir P. & Jassogne, Laurence & Asare, Richard & Graefe, Sophie & Tao, Hsiao-Hang & Muilerman, Sander & Vaast, Philippe & Van Asten, Piet & Läderach, Peter & Rötter, Reimun, 2020. "Variations in yield gaps of smallholder cocoa systems and the main determining factors along a climate gradient in Ghana," Agricultural Systems, Elsevier, vol. 181(C).
    7. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    8. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Araneda-Cabrera, Ronnie J. & Bermúdez, María & Puertas, Jerónimo, 2021. "Assessment of the performance of drought indices for explaining crop yield variability at the national scale: Methodological framework and application to Mozambique," Agricultural Water Management, Elsevier, vol. 246(C).
    10. Corwin, D.L. & Scudiero, E. & Zaccaria, D., 2022. "Modified ECa – ECe protocols for mapping soil salinity under micro-irrigation," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Barnabas A. Amisigo & Alyssa McCluskey & Richard Swanson, 2015. "Modeling Impact of Climate Change on Water Resources and Agriculture Demand in the Volta Basin and other Basin Systems in Ghana," Sustainability, MDPI, vol. 7(6), pages 1-19, May.
    12. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    13. Susanna Grasso & Pierluigi Claps & Daniele Ganora & Andrea Libertino, 2021. "A Web‐based Open‐source Geoinformation Tool for Regional Water Resources Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 675-687, January.
    14. -, 2015. "La economía del cambio climático en América Latina y el Caribe: paradojas y desafíos del desarrollo sostenible," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 37310 edited by Cepal, September.
    15. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    16. Gagné, Geneviève & Lorenzetti, François & Cogliastro, Alain & Rivest, David, 2022. "Soybean performance under moisture limitation in a temperate tree-based intercropping system," Agricultural Systems, Elsevier, vol. 201(C).
    17. Masupha, Teboho E. & Moeletsi, Mokhele E., 2020. "The use of Water Requirement Satisfaction Index for assessing agricultural drought on rain-fed maize, in the Luvuvhu River catchment, South Africa," Agricultural Water Management, Elsevier, vol. 237(C).
    18. Yu, Xingjiao & Qian, Long & Wang, Wen’e & Hu, Xiaotao & Dong, Jianhua & Pi, Yingying & Fan, Kai, 2023. "Comprehensive evaluation of terrestrial evapotranspiration from different models under extreme condition over conterminous United States," Agricultural Water Management, Elsevier, vol. 289(C).
    19. Sara Tokhi Arab & Tofael Ahamed, 2023. "Near-real-time drought monitoring and assessment for vineyard production on a regional scale with standard precipitation and vegetation indices using Landsat and CHIRPS datasets," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 591-614, June.
    20. Tonggang Fu & Hongzhu Liang & Hui Gao & Jintong Liu, 2021. "The Taihang Mountain Region of North China is Experiencing A Significant Warming Trend," Sustainability, MDPI, vol. 13(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.