Author
Listed:
- Jian, Huajian
- Gao, Zhen
- Guo, Yingying
- Xu, Xinyan
- Li, Xiaoyu
- Yu, Meijia
- Liu, Guangzhou
- Bian, Dahong
- Cui, Yanhong
- Du, Xiong
Abstract
Due to global warming, high temperature stress severely impacts maize growth and development, especially during the early filling stage. Supplemental irrigation is an effective measure to mitigate high temperature stress in maize. However, the underlying mechanism for alleviating transient high temperature stress during the early grain-filling stage is still unclear. A two-year field experiment involving high temperature during the early filling stage (HT), supplemental irrigation under high temperature stress (HTW), supplemental irrigation under control condition (W), and control treatment (CK) by using heat-tolerant variety ZD958 and heat-sensitive variety XY335 was conducted. Compared with the CK treatment, the HT treatment significantly decreased the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). HT also significantly reduced the Pn, soluble sugar content in stem, and dry matter accumulation, thus reducing kernel number per ear and yield by 11.2–17.6% and 23.4–23.7% in the both variety, respectively. However, compared with HT, the HTW treatment reduced the daily mean canopy temperature of ZD958 and XY335 by 2.6 °C and 2.8 °C, respectively. Accordingly, HTW increased SPAD value, photosynthetic performance, starch and soluble sugars content in stems and leaves, and antioxidant enzymes activities, but reduced the malondialdehyde (MDA). Moreover, HTW increased the grain sink capacity, prolonged the effective filling days by 1.4–6.5 d, and increased the average filling rate by 14.8–41.0% compared with HT. Finally, grain yield of HTW was increased by 15.8–22.3% compared with HT. Therefore, supplemental irrigation could effectively enhanced maize heat resistance by reduce canopy temperature. This study provides important insights into enhancing maize resistance and yield stability under a warming climate.
Suggested Citation
Jian, Huajian & Gao, Zhen & Guo, Yingying & Xu, Xinyan & Li, Xiaoyu & Yu, Meijia & Liu, Guangzhou & Bian, Dahong & Cui, Yanhong & Du, Xiong, 2024.
"Supplemental irrigation mitigates yield loss of maize through reducing canopy temperature under heat stress,"
Agricultural Water Management, Elsevier, vol. 299(C).
Handle:
RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002233
DOI: 10.1016/j.agwat.2024.108888
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002233. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.