IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v305y2024ics0378377424004621.html
   My bibliography  Save this article

Supplementary irrigation and reduced nitrogen application improve the productivity, water and nitrogen use efficiency of maize-soybean intercropping system in the semi-humid drought-prone region of China

Author

Listed:
  • Zhao, Zhengxin
  • Li, Zongyang
  • Li, Yao
  • Yu, Lianyu
  • Gu, Xiaobo
  • Cai, Huanjie

Abstract

Maize-soybean intercropping systems are widespread in North China. However, the combined effects of supplementary irrigation and different nitrogen (N) application rates on the productivity, water use efficiency (WUE), and N use efficiency (NUE) of such systems remain unclear. A field experiment was conducted in a semi-humid drought-prone region in Northwest China in 2022 and 2023 to assess the interaction effects of supplemental irrigation and different N application rates on the crop yields, WUE, and NUE of a maize-soybean intercropping system and a monoculture system. Three cropping systems were used: maize-soybean intercropping, maize monoculture, and soybean monoculture, with two irrigation treatment scenarios (rainfed and supplementary irrigation at 30 mm) and three N fertilizer rates for maize (240, 180, and 120 kgN ha−1). The land equivalent ratio (LER), ∆water productivity (WP), ∆N harvest index (NHI), and ∆N partial factor productivity (NPFP) of the maize-soybean intercropping system ranged from 1.06 to 1.11, 1.03–1.11, 1.17–1.34, and 1.16–1.28, respectively, demonstrating higher yields and resource of the intercropping system Supplementary irrigation significantly improved yield and resource use by improving the N complementarity effect and increased the economic by 17.24–31.16 %. A 25 % reduction in the N application rate (180 kgN ha−1) for maize increased the NPFP without decreasing the crop yield and WP whereas, a 50 % reduction (120 kgN ha−1) significantly decreased the crop yield and the economic benefits. In summary, supplementary irrigation can improve the productivity and resource use efficiency, and appropriate reduction of N fertilizer will not reduce the yield of intercropping system. This study provides practical insights for enhancing sustainable agriculture by improving water and N use efficiency in maize-soybean intercropping systems in the semi-humid arid-prone regions of China.

Suggested Citation

  • Zhao, Zhengxin & Li, Zongyang & Li, Yao & Yu, Lianyu & Gu, Xiaobo & Cai, Huanjie, 2024. "Supplementary irrigation and reduced nitrogen application improve the productivity, water and nitrogen use efficiency of maize-soybean intercropping system in the semi-humid drought-prone region of Ch," Agricultural Water Management, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004621
    DOI: 10.1016/j.agwat.2024.109126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.