IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v458y2021ics0304380021002593.html
   My bibliography  Save this article

Assessing errors during simulation configuration in crop models – A global case study using APSIM-Potato

Author

Listed:
  • Ojeda, Jonathan J.
  • Huth, Neil
  • Holzworth, Dean
  • Raymundo, Rubí
  • Zyskowski, Robert F.
  • Sinton, Sarah M.
  • Michel, Alexandre J.
  • Brown, Hamish E.

Abstract

Crop models are usually developed using a test set of data and simulations representing a range of environment, soil, management and genotype combinations. Previous studies demonstrated that errors in the configuration of test simulations and aggregation of observed data sets are common and can cause major problems for model development. However, the extent and effect of such errors using Agricultural Production system SIMulator Next Generation (APSIM) crop models are not usually considered as a source of model uncertainty. This is a methodological paper describing several approaches for testing the APSIM simulation configuration to detect anomalies in the input and observed data. In this study, we assess the simulation configuration process through (i) quality control analysis based on a standardised climate dataset (ii) outlier identification and (iii) a palette of visualization tools. A crop model – APSIM-Potato is described to demonstrate the main sources of error during the simulation configuration and data collation processes. Input data from 426 experiments conducted from 1970 to 2019 in 19 countries were collected and configured to run a model simulation. Plots were made comparing simulation configuration data and observed data across the entire test set so these values could be checked relative to others in the test set and with independent datasets. Errors were found in all steps of the simulation configuration process (climate, soil, crop management and observed data). We identified a surprising number of errors and inappropriate assumptions that had been made which could influence model predictions. The approach presented here moved the bulk of the effort from fitting model processes to setting up broad simulation configuration testing and detailed interrogation to identify current gaps for further model development.

Suggested Citation

  • Ojeda, Jonathan J. & Huth, Neil & Holzworth, Dean & Raymundo, Rubí & Zyskowski, Robert F. & Sinton, Sarah M. & Michel, Alexandre J. & Brown, Hamish E., 2021. "Assessing errors during simulation configuration in crop models – A global case study using APSIM-Potato," Ecological Modelling, Elsevier, vol. 458(C).
  • Handle: RePEc:eee:ecomod:v:458:y:2021:i:c:s0304380021002593
    DOI: 10.1016/j.ecolmodel.2021.109703
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021002593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Folberth & Rastislav Skalský & Elena Moltchanova & Juraj Balkovič & Ligia B. Azevedo & Michael Obersteiner & Marijn van der Velde, 2016. "Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations," Nature Communications, Nature, vol. 7(1), pages 1-13, September.
    2. Confalonieri, Roberto & Bregaglio, Simone & Acutis, Marco, 2016. "Quantifying uncertainty in crop model predictions due to the uncertainty in the observations used for calibration," Ecological Modelling, Elsevier, vol. 328(C), pages 72-77.
    3. Arora, V.K. & Nath, J.C. & Singh, C.B., 2013. "Analyzing potato response to irrigation and nitrogen regimes in a sub-tropical environment using SUBSTOR-Potato model," Agricultural Water Management, Elsevier, vol. 124(C), pages 69-76.
    4. S. Asseng & F. Ewert & C. Rosenzweig & J. W. Jones & J. L. Hatfield & A. C. Ruane & K. J. Boote & P. J. Thorburn & R. P. Rötter & D. Cammarano & N. Brisson & B. Basso & P. Martre & P. K. Aggarwal & C., 2013. "Uncertainty in simulating wheat yields under climate change," Nature Climate Change, Nature, vol. 3(9), pages 827-832, September.
    5. Wu, Renye & Lawes, Roger & Oliver, Yvette & Fletcher, Andrew & Chen, Chao, 2019. "How well do we need to estimate plant-available water capacity to simulate water-limited yield potential?," Agricultural Water Management, Elsevier, vol. 212(C), pages 441-447.
    6. Ojeda, J.J. & Pembleton, K.G. & Islam, M.R. & Agnusdei, M.G. & Garcia, S.C., 2016. "Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia," Agricultural Systems, Elsevier, vol. 143(C), pages 61-75.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Shirui & Ryu, Dongryeol & Western, Andrew W & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2024. "Global sensitivity analysis of APSIM-wheat yield predictions to model parameters and inputs," Ecological Modelling, Elsevier, vol. 487(C).
    2. Jiang, Tengcong & Wang, Bin & Duan, Xiaoning & Liu, De Li & He, Jianqiang & He, Liang & Jin, Ning & Feng, Hao & Yu, Qiang, 2023. "Prioritizing agronomic practices and uncertainty assessment under climate change for winter wheat in the loess plateau, China," Agricultural Systems, Elsevier, vol. 212(C).
    3. Palosuo, Taru & Hoffmann, Munir P. & Rötter, Reimund P. & Lehtonen, Heikki S., 2021. "Sustainable intensification of crop production under alternative future changes in climate and technology: The case of the North Savo region," Agricultural Systems, Elsevier, vol. 190(C).
    4. Chapagain, Ranju & Huth, Neil & Remenyi, Tomas A. & Mohammed, Caroline L. & Ojeda, Jonathan J., 2023. "Assessing the effect of using different APSIM model configurations on model outputs," Ecological Modelling, Elsevier, vol. 483(C).
    5. Schils, René L.M. & van Voorn, George A.K. & Grassini, Patricio & van Ittersum, Martin K., 2022. "Uncertainty is more than a number or colour: Involving experts in uncertainty assessments of yield gaps," Agricultural Systems, Elsevier, vol. 195(C).
    6. Mahboobe Ghobadi & Mahdi Gheysari & Mohammad Shayannejad & Hamze Dokoohaki, 2023. "Analyzing the Effects of Planting Date on the Uncertainty of CERES-Maize and Its Potential to Reduce Yield Gap in Arid and Mediterranean Climates," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    7. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    8. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    9. Licheng Liu & Wang Zhou & Kaiyu Guan & Bin Peng & Shaoming Xu & Jinyun Tang & Qing Zhu & Jessica Till & Xiaowei Jia & Chongya Jiang & Sheng Wang & Ziqi Qin & Hui Kong & Robert Grant & Symon Mezbahuddi, 2024. "Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    11. da Silva, Andre Luiz Biscaia Ribeiro & Dias, Henrique Boriolo & Gupta, Rishabh & Zotarelli, Lincoln & Asseng, Senthold & Dukes, Michael D. & Porter, Cheryl & Hoogenboom, Gerrit, 2024. "Assessing the impact of irrigation and nitrogen management on potato performance under varying climate in the state of Florida, USA," Agricultural Water Management, Elsevier, vol. 295(C).
    12. Shekhar, Ankit & Shapiro, Charles A., 2022. "Prospective crop yield and income return based on a retrospective analysis of a long-term rainfed agriculture experiment in Nebraska," Agricultural Systems, Elsevier, vol. 198(C).
    13. Yan Shan & Mingbin Huang & Paul Harris & Lianhai Wu, 2021. "A Sensitivity Analysis of the SPACSYS Model," Agriculture, MDPI, vol. 11(7), pages 1-30, July.
    14. Bohan, David & Schmucki, Reto & Abay, Abrha & Termansen, Mette & Bane, Miranda & Charalabiis, Alice & Cong, Rong-Gang & Derocles, Stephane & Dorner, Zita & Forster, Matthieu & Gibert, Caroline & Harro, 2020. "Designing farmer-acceptable rotations that assure ecosystem service provision inthe face of climate change," MPRA Paper 112313, University Library of Munich, Germany.
    15. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    16. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    17. Cai, Liping & Wang, Hui & Liu, Yanxu & Fan, Donglin & Li, Xiaoxiao, 2022. "Is potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM," Land Use Policy, Elsevier, vol. 112(C).
    18. Guo, Qinghua & Wu, Wenliang, 2024. "Dynamics of soil water and nitrate within the vadose zone simulated by the WHCNS model calibrated based on deep learning," Agricultural Water Management, Elsevier, vol. 292(C).
    19. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    20. Ellenburg, W. Lee & Miller, Sara E. & Mishra, Vikalp & Ndungu, Lilian & Adams, Emily & Das, Narendra & Andreadis, Konstantinos M. & Limaye, Ashutosh, 2024. "Evaluation of a regional crop model implementation for sub-national yield assessments in Kenya," Agricultural Systems, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:458:y:2021:i:c:s0304380021002593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.