IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v293y2024ics0378377424000441.html
   My bibliography  Save this article

Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties

Author

Listed:
  • França, Ana Carolina Ferreira
  • Coelho, Rubens Duarte
  • da Silva Gundim, Alice
  • de Oliveira Costa, Jéfferson
  • Quiloango-Chimarro, Carlos Alberto

Abstract

An adequate irrigation schedule can result in significant water savings and improved crop yields, especially in large areas such as commodity crops. However, insufficient information is available regarding soybean crops in terms of irrigation scheduling methods and their interaction with irrigation water productivity (IWP) for different soybean varieties. The objective of this study was to quantify the effect of climate-, soil-, and plant-based irrigation scheduling methods on the physiology, yield, and IWP of three soybean varieties. A shelter experiment was conducted using a randomized design with split plots of two factors and five replications. Five irrigation methods and three soybean varieties (TMG 7067, 58i60RSF IPRO, and NA 5909) were tested. In CB (climate-based method) the evapotranspiration-water balance was used; in SB1 and SB2 (soil-based methods), irrigation at field capacity was applied when the soil matric potential reach − 20 kPa at depths of 0.1 m and 0.3 m, respectively; while In PB1 and PB2 (plant-based methods), canopy temperature depressions (CTD) of ∼2 °C and ∼4 °C, respectively, were employed to trigger irrigation. The amount of irrigation water applied under all irrigation scheduling methods ranged from 310 (PB1 and PB2) to 786 mm (V1 under SB1). The net photosynthetic rate (A), stomatal conductance (gs), transpiration (E), and leaf water potential (LWP) were higher under SB1 and SB2 than under other irrigation methods. On average, grain yield (GY) was significantly higher in SB1 (3.5 Mg ha-1), than in SB2 (3.0 Mg ha-1), CB (2.5 Mg ha-1), PB1 (2.4 Mg ha-1) and PB2 (2.0 Mg ha-1). However, it was also found that PB1 treatment resulted in significantly increased IWP (0.84 kg m-3) compared to the other irrigation treatments. Overall, the choice of irrigation scheduling methods for soybean crops under tropical conditions should be based on the technology level, water resource availability, and individual farmer goals to maximize GY per unit area (SB1 and SB2) or optimize IWP (PB1). In addition, despite the ease of use of climate- and plant-based methods, all of these methods should be calibrated against soil-based methods under different climatic conditions and for a large number of genotypes.

Suggested Citation

  • França, Ana Carolina Ferreira & Coelho, Rubens Duarte & da Silva Gundim, Alice & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto, 2024. "Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties," Agricultural Water Management, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000441
    DOI: 10.1016/j.agwat.2024.108709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farooq, Muhammad & Hussain, Mubshar & Ul-Allah, Sami & Siddique, Kadambot H.M., 2019. "Physiological and agronomic approaches for improving water-use efficiency in crop plants," Agricultural Water Management, Elsevier, vol. 219(C), pages 95-108.
    2. Rodriguez, Renata del G. & Scanlon, Bridget R. & King, Carey W. & Scarpare, Fabio V. & Xavier, Alexandre C. & Pruski, Fernando F., 2018. "Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado," Applied Energy, Elsevier, vol. 231(C), pages 1330-1345.
    3. Veysi, Shadman & Naseri, Abd Ali & Hamzeh, Saeid & Bartholomeus, Harm, 2017. "A satellite based crop water stress index for irrigation scheduling in sugarcane fields," Agricultural Water Management, Elsevier, vol. 189(C), pages 70-86.
    4. Gajić, Boško & Kresović, Branka & Tapanarova, Angelina & Životić, Ljubomir & Todorović, Mladen, 2018. "Effect of irrigation regime on yield, harvest index and water productivity of soybean grown under different precipitation conditions in a temperate environment," Agricultural Water Management, Elsevier, vol. 210(C), pages 224-231.
    5. Kumar Jha, Shiva & Ramatshaba, Tefo Steve & Wang, Guangshuai & Liang, Yueping & Liu, Hao & Gao, Yang & Duan, Aiwang, 2019. "Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain," Agricultural Water Management, Elsevier, vol. 217(C), pages 292-302.
    6. Byrareddy, Vivekananda & Kouadio, Louis & Kath, Jarrod & Mushtaq, Shahbaz & Rafiei, Vahid & Scobie, Michael & Stone, Roger, 2020. "Win-win: Improved irrigation management saves water and increases yield for robusta coffee farms in Vietnam," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Payero, José O. & Irmak, Suat, 2013. "Daily energy fluxes, evapotranspiration and crop coefficient of soybean," Agricultural Water Management, Elsevier, vol. 129(C), pages 31-43.
    9. Garcia y Garcia, A. & Persson, T. & Guerra, L.C. & Hoogenboom, G., 2010. "Response of soybean genotypes to different irrigation regimes in a humid region of the southeastern USA," Agricultural Water Management, Elsevier, vol. 97(7), pages 981-987, July.
    10. He, Jin & Du, Yan-Lei & Wang, Tao & Turner, Neil C. & Yang, Ru-Ping & Jin, Yi & Xi, Yue & Zhang, Cong & Cui, Ting & Fang, Xiang-Wen & Li, Feng-Min, 2017. "Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought," Agricultural Water Management, Elsevier, vol. 179(C), pages 236-245.
    11. Santos, Lucas C. & Coelho, Rubens D. & Barbosa, Fernando S. & Leal, Daniel P.V. & Fraga Júnior, Eusímio F. & Barros, Timóteo H.S. & Lizcano, Jonathan V. & Ribeiro, Nathália L., 2019. "Influence of deficit irrigation on accumulation and partitioning of sugarcane biomass under drip irrigation in commercial varieties," Agricultural Water Management, Elsevier, vol. 221(C), pages 322-333.
    12. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    13. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Hou, Mengjie & Tian, Fei & Zhang, Tong & Huang, Mengsi, 2019. "Evaluation of canopy temperature depression, transpiration, and canopy greenness in relation to yield of soybean at reproductive stage based on remote sensing imagery," Agricultural Water Management, Elsevier, vol. 222(C), pages 182-192.
    15. Marin, Fabio R. & Angelocci, Luiz Roberto, 2011. "Irrigation requirements and transpiration coupling to the atmosphere of a citrus orchard in Southern Brazil," Agricultural Water Management, Elsevier, vol. 98(6), pages 1091-1096, April.
    16. Anapalli, Saseendran S. & Pinnamaneni, Srinivasa R. & Reddy, Krishna N. & Sui, Ruixiu & Singh, Gurbir, 2022. "Investigating soybean (Glycine max L.) responses to irrigation on a large-scale farm in the humid climate of the Mississippi Delta region," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Bwambale, Erion & Abagale, Felix K. & Anornu, Geophrey K., 2022. "Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Daniel Rojas-Valverde & José Pino-Ortega & Carlos D. Gómez-Carmona & Markel Rico-González, 2020. "A Systematic Review of Methods and Criteria Standard Proposal for the Use of Principal Component Analysis in Team’s Sports Science," IJERPH, MDPI, vol. 17(23), pages 1-13, November.
    19. Yohannes, Degol Fissahaye & Ritsema, C.J. & Eyasu, Y. & Solomon, H. & van Dam, J.C. & Froebrich, J. & Ritzema, H.P. & Meressa, A., 2019. "A participatory and practical irrigation scheduling in semiarid areas: the case of Gumselassa irrigation scheme in Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 218(C), pages 102-114.
    20. Souza, Silas Alves & Rodrigues, Lineu Neiva, 2022. "Increased profitability and energy savings potential with the use of precision irrigation," Agricultural Water Management, Elsevier, vol. 270(C).
    21. Segovia-Cardozo, Daniel Alberto & Rodríguez-Sinobas, Leonor & Zubelzu, Sergio, 2019. "Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images," Agricultural Water Management, Elsevier, vol. 212(C), pages 241-251.
    22. Soulis, Konstantinos X. & Elmaloglou, Stamatios & Dercas, Nicholas, 2015. "Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems," Agricultural Water Management, Elsevier, vol. 148(C), pages 258-268.
    23. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    24. Ahmed A. Abdelmoneim & Roula Khadra & Angela Elkamouh & Bilal Derardja & Giovanna Dragonetti, 2023. "Towards Affordable Precision Irrigation: An Experimental Comparison of Weather-Based and Soil Water Potential-Based Irrigation Using Low-Cost IoT-Tensiometers on Drip Irrigated Lettuce," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
    25. Sharma, Harmandeep & Shukla, Manoj K. & Bosland, Paul W. & Steiner, Robert, 2017. "Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers," Agricultural Water Management, Elsevier, vol. 179(C), pages 81-91.
    26. da Silva, Evandro H.F.M. & Gonçalves, Alexandre O. & Pereira, Rodolfo A. & Fattori Júnior, Izael M. & Sobenko, Luiz R. & Marin, Fábio R., 2019. "Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil," Agricultural Water Management, Elsevier, vol. 218(C), pages 1-7.
    27. Khorsand, Afshin & Rezaverdinejad, Vahid & Asgarzadeh, Hossein & Majnooni-Heris, Abolfazl & Rahimi, Amir & Besharat, Sina, 2019. "Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qunyan & Jia, Yifan & Pang, Zhongjun & Zhou, Jianbin & Scriber, Kevin Emmanuel & Liang, Bin & Chen, Zhujun, 2024. "Intelligent fertigation improves tomato yield and quality and water and nutrient use efficiency in solar greenhouse production," Agricultural Water Management, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. da Silva, Evandro H.F.M. & Gonçalves, Alexandre O. & Pereira, Rodolfo A. & Fattori Júnior, Izael M. & Sobenko, Luiz R. & Marin, Fábio R., 2019. "Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil," Agricultural Water Management, Elsevier, vol. 218(C), pages 1-7.
    3. Xie, Shuhua & Leib, Brian G. & Farhadi-Machekposhti, Mabood & Grant, Timothy James & Adotey, Nutifafa & Butler, David M., 2024. "Soybean yield response to managed depletion irrigation regimes in a Mid-South silt loam soil," Agricultural Water Management, Elsevier, vol. 292(C).
    4. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    6. Liao, Zhenqi & Zeng, Hualiang & Fan, Junliang & Lai, Zhenlin & Zhang, Chen & Zhang, Fucang & Wang, Haidong & Cheng, Minghui & Guo, Jinjin & Li, Zhijun & Wu, Peng, 2022. "Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching," Agricultural Water Management, Elsevier, vol. 268(C).
    7. Yamini, Vaddula & Singh, Kulvir, 2024. "Emitter spacing, depth of lateral placement, and nutrient levels affect productivity of cotton-wheat cropping system under sub-surface drip fertigation," Agricultural Water Management, Elsevier, vol. 295(C).
    8. Liu, Xuchen & Liu, Junming & Huang, Chao & Liu, Huihao & Meng, Ye & Chen, Haiqing & Ma, Shoutian & Liu, Zhandong, 2024. "The impacts of irrigation methods and regimes on the water and nitrogen utilization efficiency in subsoiling wheat fields," Agricultural Water Management, Elsevier, vol. 295(C).
    9. Mwinuka, Paul Reuben & Mbilinyi, Boniface P. & Mbungu, Winfred B. & Mourice, Sixbert K. & Mahoo, H.F. & Schmitter, Petra, 2021. "The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L)," Agricultural Water Management, Elsevier, vol. 245(C).
    10. Lankford, Bruce A., 2023. "Resolving the paradoxes of irrigation efficiency: Irrigated systems accounting analyses depletion-based water conservation for reallocation," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Eltarabily, Mohamed Galal & Mohamed, Abdelmoneim Zakaria & Begna, Sultan & Wang, Dong & Putnam, Daniel H. & Scudiero, Elia & Bali, Khaled M., 2024. "Simulated soil water distribution patterns and water use of Alfalfa under different subsurface drip irrigation depths," Agricultural Water Management, Elsevier, vol. 293(C).
    12. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    13. de Almeida, Ailson Maciel & Coelho, Rubens Duarte & da Silva Barros, Timóteo Herculino & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto & Moreno-Pizani, Maria Alejandra & Farias-Ram, 2022. "Water productivity and canopy thermal response of pearl millet subjected to different irrigation levels," Agricultural Water Management, Elsevier, vol. 272(C).
    14. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    15. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Cao, Xinchun & Li, Yueyao & Wu, Mengyang, 2022. "Irrigation water use and efficiency assessment coupling crop cultivation, commutation and consumption processes," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    18. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    19. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    20. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.