IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v202y2018icp57-65.html
   My bibliography  Save this article

Almond tree response to a change in wetted soil volume under drip irrigation

Author

Listed:
  • Espadafor, M.
  • Orgaz, F.
  • Testi, L.
  • Lorite, I.J.
  • García-Tejera, O.
  • Villalobos, F.J.
  • Fereres, E.

Abstract

Under localized irrigation, even when applying non-limiting amounts of water, there could be transpiration (T) limitations due to a limited wetted soil volume. To study under field conditions how drip-irrigated almond trees responded to a change in wetted soil volume, two treatments were established in summer 2012 in a drip irrigated almond orchard in Cordoba, Spain. One treatment (“Large volume”) was initially irrigated with micro-sprinklers (MS) to wet the entire ground surface, and then reverted to drip irrigation, while other was always kept under drip irrigation (“Small volume”). Continuous monitoring of T and measurements of soil moisture content, tree water status and trunk growth were carried out. Even though trees in both treatments were supplied with sufficient water, the MS application induced an increase in T and an improvement in water status in “Large volume” relative to “Small volume”. A reduction in the hydraulic resistance of the tree was also detected in “Large volume”, as well as an enhancement in canopy conductance and tree growth. We concluded that there are situations in the field where almond tree transpiration is limited by an insufficient wetted soil volume, even when supplied with adequate water, due to a high hydraulic resistance during times of high evaporative demand.

Suggested Citation

  • Espadafor, M. & Orgaz, F. & Testi, L. & Lorite, I.J. & García-Tejera, O. & Villalobos, F.J. & Fereres, E., 2018. "Almond tree response to a change in wetted soil volume under drip irrigation," Agricultural Water Management, Elsevier, vol. 202(C), pages 57-65.
  • Handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:57-65
    DOI: 10.1016/j.agwat.2018.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418300763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Girona, J. & Mata, M. & Marsal, J., 2005. "Regulated deficit irrigation during the kernel-filling period and optimal irrigation rates in almond," Agricultural Water Management, Elsevier, vol. 75(2), pages 152-167, July.
    2. Andreu, L. & Hopmans, J. W. & Schwankl, L. J., 1997. "Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree," Agricultural Water Management, Elsevier, vol. 35(1-2), pages 123-146, December.
    3. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanella, Daniela & Peddinti, Srinivasa Rao & Kisekka, Isaya, 2022. "Unravelling soil water dynamics in almond orchards characterized by soil-heterogeneity using electrical resistivity tomography," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Lecaros-Arellano, F. & Holzapfel, E. & Fereres, E. & Rivera, D. & Muñoz, N. & Jara, J., 2021. "Effects of the number of drip laterals on yield and quality of apples grown in two soil types," Agricultural Water Management, Elsevier, vol. 248(C).
    3. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    5. José Manuel Mirás-Avalos & Pedro Marco & Sergio Sánchez & Beatriz Bielsa & María José Rubio Cabetas & Vicente González, 2022. "Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions," Sustainability, MDPI, vol. 14(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    2. Gutiérrez-Gordillo, S. & Durán-Zuazo, V.H. & García-Tejero, I., 2019. "Response of three almond cultivars subjected to different irrigation regimes in Guadalquivir river basin," Agricultural Water Management, Elsevier, vol. 222(C), pages 72-81.
    3. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Iniesta, F. & Testi, L. & Goldhamer, D.A. & Fereres, E., 2008. "Quantifying reductions in consumptive water use under regulated deficit irrigation in pistachio (Pistacia vera L.)," Agricultural Water Management, Elsevier, vol. 95(7), pages 877-886, July.
    5. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Egea, Gregorio & Nortes, Pedro A. & González-Real, María M. & Baille, Alain & Domingo, Rafael, 2010. "Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(1), pages 171-181, January.
    7. Qu, Zhaoming & Qi, Xingchao & Liu, Yanli & Liu, Kexin & Li, Chengliang, 2020. "Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse," Agricultural Water Management, Elsevier, vol. 235(C).
    8. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    9. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    10. Mirás-Avalos, José M. & Gonzalez-Dugo, Victoria & García-Tejero, Iván F. & López-Urrea, Ramón & Intrigliolo, Diego S. & Egea, Gregorio, 2023. "Quantitative analysis of almond yield response to irrigation regimes in Mediterranean Spain," Agricultural Water Management, Elsevier, vol. 279(C).
    11. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Šimůnek, Jiří & Hopmans, Jan W., 2009. "Modeling compensated root water and nutrient uptake," Ecological Modelling, Elsevier, vol. 220(4), pages 505-521.
    13. Wang, Dong & Zhang, Huihui & Gartung, Jim, 2020. "Long-term productivity of early season peach trees under different irrigation methods and postharvest deficit irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    14. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
    15. Silber, A. & Levi, M. & Cohen, M. & David, N. & Shtaynmetz, Y. & Assouline, S., 2007. "Response of Leucadendron `Safari Sunset' to regulated deficit irrigation: Effects of stress timing on growth and yield quality," Agricultural Water Management, Elsevier, vol. 87(2), pages 162-170, January.
    16. Gasque, María & Martí, Pau & Granero, Beatriz & González-Altozano, Pablo, 2016. "Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees," Agricultural Water Management, Elsevier, vol. 169(C), pages 140-147.
    17. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    18. Vanella, Daniela & Peddinti, Srinivasa Rao & Kisekka, Isaya, 2022. "Unravelling soil water dynamics in almond orchards characterized by soil-heterogeneity using electrical resistivity tomography," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Yao, Zhenzhu & Hou, Xuemin & Wang, Yu & Du, Taisheng, 2023. "Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions," Agricultural Water Management, Elsevier, vol. 282(C).
    20. Abrisqueta, J.M. & Mounzer, O. & Álvarez, S. & Conejero, W. & Garci­a-Orellana, Y. & Tapia, L.M. & Vera, J. & Abrisqueta, I. & Ruiz-Sánchez, M.C., 2008. "Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation," Agricultural Water Management, Elsevier, vol. 95(8), pages 959-967, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:57-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.