IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v288y2023ics0378377423003414.html
   My bibliography  Save this article

Reducing the risk of onion bacterial diseases through managing irrigation frequency and final irrigation timing

Author

Listed:
  • Belo, Tessa R.
  • du Toit, Lindsey J.
  • Waters, Timothy D.
  • Derie, Michael L.
  • Schacht, Betsy
  • LaHue, Gabriel T.

Abstract

Onion bacterial diseases pose a serious economic risk to growers as they can lead to catastrophic crop losses. Moisture in the plant canopy plays a critical role in onion bacterial disease development by dispersing the pathogens onto plants (e.g., in splashing water) and keeping conditions conducive for bacterial growth. For this reason, irrigation management can be a promising avenue for controlling bacterial diseases in regions where irrigation is used widely, particularly overhead irrigation. This study investigated the effects of in-season irrigation frequency and timing of the final irrigation on onion bacterial bulb rot and marketable bulb yield over the 2020 and 2021 growing seasons in Washington State’s semi-arid Columbia Basin, using overhead irrigation. Irrigating twice as often but for shorter periods did not increase the incidence of onion bacterial diseases or affect yield compared to longer, less frequent irrigation events under the conditions of this experiment. However, timing of the final irrigation did influence bacterial disease incidence. Irrigating until the tops (leaves and necks) had fallen over on 90% of onion plants led to culling of more bulbs at harvest as a result of bacterial rot and more bulbs with bacterial rot after five months in storage compared to plots in which irrigation was stopped two weeks earlier, at 5–10% tops down. Ending irrigation at 5–10% tops down did not reduce marketable yield or affect bulb size distribution. In semi-arid regions, careful irrigation management can be an important part of managing onion bacterial diseases, particularly at the end of the season when onion plants are most vulnerable to neck and bulb infection.

Suggested Citation

  • Belo, Tessa R. & du Toit, Lindsey J. & Waters, Timothy D. & Derie, Michael L. & Schacht, Betsy & LaHue, Gabriel T., 2023. "Reducing the risk of onion bacterial diseases through managing irrigation frequency and final irrigation timing," Agricultural Water Management, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:agiwat:v:288:y:2023:i:c:s0378377423003414
    DOI: 10.1016/j.agwat.2023.108476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wakchaure, G.C. & Minhas, P.S. & Kumar, Satish & Khapte, P.S. & Meena, K.K. & Rane, Jagadish & Pathak, H., 2021. "Quantification of water stress impacts on canopy traits, yield, quality and water productivity of onion (Allium cepa L.) cultivars in a shallow basaltic soil of water scarce zone," Agricultural Water Management, Elsevier, vol. 249(C).
    2. López-Urrea, R. & Martín de Santa Olalla, F. & Montoro, A. & López-Fuster, P., 2009. "Single and dual crop coefficients and water requirements for onion (Allium cepa L.) under semiarid conditions," Agricultural Water Management, Elsevier, vol. 96(6), pages 1031-1036, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    3. García-Mateos, G. & Hernández-Hernández, J.L. & Escarabajal-Henarejos, D. & Jaén-Terrones, S. & Molina-Martínez, J.M., 2015. "Study and comparison of color models for automatic image analysis in irrigation management applications," Agricultural Water Management, Elsevier, vol. 151(C), pages 158-166.
    4. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & Cavas-Martínez, F. & García-Mateos, G., 2015. "Digital photography applied to irrigation management of Little Gem lettuce," Agricultural Water Management, Elsevier, vol. 151(C), pages 148-157.
    5. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & García-Mateos, G., 2015. "Methodology for obtaining prediction models of the root depth of lettuce for its application in irrigation automation," Agricultural Water Management, Elsevier, vol. 151(C), pages 167-173.
    7. Salgado, Ramiro & Mateos, Luciano, 2021. "Evaluation of different methods of estimating ET for the performance assessment of irrigation schemes," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Sánchez, J.M. & López-Urrea, R. & Rubio, E. & González-Piqueras, J. & Caselles, V., 2014. "Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry," Agricultural Water Management, Elsevier, vol. 137(C), pages 23-29.
    10. González-Esquiva, J.M. & García-Mateos, G. & Escarabajal-Henarejos, D. & Hernández-Hernández, J.L. & Ruiz-Canales, A. & Molina-Martínez, J.M., 2017. "A new model for water balance estimation on lettuce crops using effective diameter obtained with image analysis," Agricultural Water Management, Elsevier, vol. 183(C), pages 116-122.
    11. Hernández-Hernández, J.L. & Ruiz-Hernández, J. & García-Mateos, G. & González-Esquiva, J.M. & Ruiz-Canales, A. & Molina-Martínez, J.M., 2017. "A new portable application for automatic segmentation of plants in agriculture," Agricultural Water Management, Elsevier, vol. 183(C), pages 146-157.
    12. Flumignan, Danilton Luiz & de Faria, Rogério Teixeira & Prete, Cássio Egídio Cavenaghi, 2011. "Evapotranspiration components and dual crop coefficients of coffee trees during crop production," Agricultural Water Management, Elsevier, vol. 98(5), pages 791-800, March.
    13. Domínguez, A. & Martínez-Navarro, A. & López-Mata, E. & Tarjuelo, J.M. & Martínez-Romero, A., 2017. "Real farm management depending on the available volume of irrigation water (part I): Financial analysis," Agricultural Water Management, Elsevier, vol. 192(C), pages 71-84.
    14. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    15. Zhang, Kefeng & Hilton, Howard W. & Greenwood, Duncan J. & Thompson, Andrew J., 2011. "A rigorous approach of determining FAO56 dual crop coefficient using soil sensor measurements and inverse modeling techniques," Agricultural Water Management, Elsevier, vol. 98(6), pages 1081-1090, April.
    16. Facchi, A. & Gharsallah, O. & Corbari, C. & Masseroni, D. & Mancini, M. & Gandolfi, C., 2013. "Determination of maize crop coefficients in humid climate regime using the eddy covariance technique," Agricultural Water Management, Elsevier, vol. 130(C), pages 131-141.
    17. López-Urrea, R. & Sánchez, J.M. & de la Cruz, F. & González-Piqueras, J. & Chávez, J.L., 2020. "Evapotranspiration and crop coefficients from lysimeter measurements for sprinkler-irrigated canola," Agricultural Water Management, Elsevier, vol. 239(C).
    18. Drerup, Philipp & Brueck, Holger & Scherer, Heinrich W., 2017. "Evapotranspiration of winter wheat estimated with the FAO 56 approach and NDVI measurements in a temperate humid climate of NW Europe," Agricultural Water Management, Elsevier, vol. 192(C), pages 180-188.
    19. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Leite, K.N. & Martínez-Romero, A. & Tarjuelo, J.M. & Domínguez, A., 2015. "Distribution of limited irrigation water based on optimized regulated deficit irrigation and typical metheorological year concepts," Agricultural Water Management, Elsevier, vol. 148(C), pages 164-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:288:y:2023:i:c:s0378377423003414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.