IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v286y2023ics0378377423002706.html
   My bibliography  Save this article

Evaluating established deep learning methods in constructing integrated remote sensing drought index: A case study in China

Author

Listed:
  • Xu, Zhenheng
  • Sun, Hao
  • Zhang, Tian
  • Xu, Huanyu
  • Wu, Dan
  • Gao, JinHua

Abstract

Agricultural drought seriously threatens the food and ecological security of most of the world’s developing countries. Data-driven integrated agricultural drought index with remote sensing provides an effective tool to monitor, evaluate, and predict the agricultural drought. However, there is still a lack of comprehensive analytical work on taking the most effective machine learning (ML) and deep learning (DL) methods to construct such integrated drought index. In other words, it is still unclear whether the recent DL methods can improve integrated drought monitoring as compared with the currently widely used ML methods. Therefore, we critically evaluated the performances of four representative DL methods (represents the four currently popular DL network types) i.e., Entity Embedding Deep Neural Network (EEDNN), One-dimensional Convolutional Neural Network (1D-CNN), Gated Recurrent Unit (GRU), and Self-Attention Mechanism (SAM) and three widely used tree-based ML methods i.e., Cubist, Random Forest (RF), and Light Gradient Boosting Machine (LGBM), through constructing a QuickDRI like integrated drought index (abbreviated as QuickDRI-China). About 30 years of meteorological data, 14 years of remote sensing data, and various biophysical variables in China such as land use/land cover, available water capacity, irrigated agriculture, elevation, and ecoregion were employed in this study. Results showed that the EEDNN performed best, followed by the RF and LGBM, and then the other methods including the currently wide used Cubist, according to the station accuracy evaluations, spatial description evaluations, and responses to specific drought event. The tree-based ML methods such as RF and LGBM are still competitive in constructing the integrated agricultural drought index at the current stage. However, the higher accuracy, the smoother spatial description, and the more responsive ability of the EEDNN demonstrate great potential of DL methods. The future integrated agricultural drought monitoring with remote sensing should develop a specialized DL network for heterogeneous agricultural drought features.

Suggested Citation

  • Xu, Zhenheng & Sun, Hao & Zhang, Tian & Xu, Huanyu & Wu, Dan & Gao, JinHua, 2023. "Evaluating established deep learning methods in constructing integrated remote sensing drought index: A case study in China," Agricultural Water Management, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s0378377423002706
    DOI: 10.1016/j.agwat.2023.108405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423002706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    2. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    3. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    4. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    5. Feng, Puyu & Wang, Bin & Liu, De Li & Yu, Qiang, 2019. "Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 173(C), pages 303-316.
    6. Gustavo Naumann & Carmelo Cammalleri & Lorenzo Mentaschi & Luc Feyen, 2021. "Increased economic drought impacts in Europe with anthropogenic warming," Nature Climate Change, Nature, vol. 11(6), pages 485-491, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Siyao & Li, Jianzhu & Zhang, Ting & Feng, Ping & Liu, Weilin, 2024. "Response of vegetation to SPI and driving factors in Chinese mainland," Agricultural Water Management, Elsevier, vol. 291(C).
    2. Zhang, Q. & Li, Y.P. & Huang, G.H. & Wang, H. & Li, Y.F. & Shen, Z.Y., 2024. "Multivariate time series convolutional neural networks for long-term agricultural drought prediction under global warming," Agricultural Water Management, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    2. Jianzhi Dong & Fangni Lei & Wade T. Crow, 2022. "Land transpiration-evaporation partitioning errors responsible for modeled summertime warm bias in the central United States," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Huynh, Thanh D. & Nguyen, Thu Ha & Truong, Cameron, 2020. "Climate risk: The price of drought," Journal of Corporate Finance, Elsevier, vol. 65(C).
    4. Guga, Suri & Ma, Yining & Riao, Dao & Zhi, Feng & Xu, Jie & Zhang, Jiquan, 2023. "Drought monitoring of sugarcane and dynamic variation characteristics under global warming: A case study of Guangxi, China," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Somnath Mondal & Ashok K. Mishra & Ruby Leung & Benjamin Cook, 2023. "Global droughts connected by linkages between drought hubs," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Li, Su-Yuan & Miao, Li-Juan & Jiang, Zhi-Hong & Wang, Guo-Jie & Gnyawali, Kaushal Raj & Zhang, Jing & Zhang, Hui & Fang, Ke & He, Yu & Li, Chun, 2020. "Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(3), pages 210-217.
    7. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    8. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    9. Anna Jędrejek & Rafał Pudełko, 2023. "Exploring the Potential Use of Sentinel-1 and 2 Satellite Imagery for Monitoring Winter Wheat Growth under Agricultural Drought Conditions in North-Western Poland," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
    10. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    11. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    12. Nabeel Bani Hani & Fakher J. Aukour & Mohammed I. Al-Qinna, 2022. "Investigating the Pearl Millet ( Pennisetum glaucum ) as a Climate-Smart Drought-Tolerant Crop under Jordanian Arid Environments," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    13. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    14. Fangtian Liu & Erqi Xu & Hongqi Zhang, 2024. "Assessing typhoon disaster mitigation capacity and its uncertainty analysis in Hainan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9401-9420, September.
    15. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    17. L. Lin & A. Gettelman & Q. Fu & Y. Xu, 2018. "Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols," Climatic Change, Springer, vol. 146(3), pages 407-422, February.
    18. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    19. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    20. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s0378377423002706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.