IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v283y2023ics0378377423001853.html
   My bibliography  Save this article

Organic substitution improves soil structure and water and nitrogen status to promote sunflower (Helianthus annuus L.) growth in an arid saline area

Author

Listed:
  • Cheng, Yu
  • Luo, Min
  • Zhang, Tonggang
  • Yan, Sihui
  • Wang, Chun
  • Dong, Qin’ge
  • Feng, Hao
  • Zhang, Tibin
  • Kisekka, Isaya

Abstract

Organic substitution (partial substitution of chemical fertilizer with organic fertilizer) is an effective approach to address soil degradation caused by excessive application of chemical fertilizers, particularly in saline areas. This study aimed to evaluate the effects of different organic substitution proportions by using organic fertilizer made from agricultural wastes on saline-sodic soil properties and sunflower (Helianthus annuus L.) growth in an arid saline area. Additionally, the study tried to reveal the possible mechanism of organic substitution on soil quality improvement from soil structure. A two-year field experiment was conducted in the Hetao Irrigation District, northwest China during the sunflower growing season in 2019 and 2020. The study soil type is saline-sodic soil with ECe of 18.3 dS m−1, pH of 8.3, and exchange sodium percentage (ESP) of 18 % in the 0–0.2 m soil layer, with a silt loam soil texture. Based on the recommended total N input (180 kg ha−1) for sunflower, four treatments were designed with three replicates: (i) CK (no fertilization), (ii) OF0 (chemical fertilization only), (iii) OF1 (organic fertilizer substituting 50 % of the urea N), and (iv) OF2 (organic fertilizer substituting 100 % of the urea N). Totally 12 plots were arranged in a randomized complete block design. The results showed that in the 0–0.4 m soil player, compared with OF0, OF1 and OF2 significantly decreased bulk density by 4 % and 6 %, respectively, and turbidity of soil suspension by 36 % and 66 %, respectively. Additionally, OF1 and OF2 significantly increased soil total porosity in 0–0.4 m soil player, mainly in macro-porosity (> 30 µm) and meso-porosity (0.2–30 µm), and increased soil water content compared with OF0 and CK. The improvement of soil structure was attributed to the amelioration of sodicity (reduction of sodium adsorption ratio (SAR) or cation ratio of soil structural stability (CROSS)), and as its consequence, leaching of salt out of the surface layers. Furthermore, compared with OF0 and OF2, OF1 maintained a stable NO3-N supply and significantly increased agronomic efficiency of applied nitrogen by 29 % and 22 %, respectively. Moreover, OF1 on average significantly increased grain yield by 9 % and 8 %, crop water productivity by 12 % and 4 %, and net income by 7 % and 23 %, respectively. Mantel tests revealed that soil water content in the root zone and NO3-N concentration in the maturity stage were key indicators significantly affecting sunflower growth under the organic substitution. In conclusion, from the perspective of improving the soil properties, crop water-fertilizer productivity, and economic benefits, organic fertilizer substituting 50 % of the urea N was recommended for sunflower production under the arid saline environment.

Suggested Citation

  • Cheng, Yu & Luo, Min & Zhang, Tonggang & Yan, Sihui & Wang, Chun & Dong, Qin’ge & Feng, Hao & Zhang, Tibin & Kisekka, Isaya, 2023. "Organic substitution improves soil structure and water and nitrogen status to promote sunflower (Helianthus annuus L.) growth in an arid saline area," Agricultural Water Management, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001853
    DOI: 10.1016/j.agwat.2023.108320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Chang-An & Li, Feng-Rui & Zhou, Li-Min & Zhang, Rong-He & Yu-Jia, & Lin, Shi-Ling & Wang, Li-Jun & Siddique, Kadambot H.M. & Li, Feng-Min, 2013. "Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 117(C), pages 123-132.
    2. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Chenxiao & Li, Jiabei & Zhang, Binbin & Wu, Shufang & Fan, Junliang & Feng, Hao & He, Jianqiang & Siddique, Kadambot H.M., 2023. "Effect of bio-organic fertilizer derived from agricultural waste resources on soil properties and winter wheat (Triticum aestivum L.) yield in semi-humid drought-prone regions," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Dandan Yu & Qingfeng Miao & Haibin Shi & Zhuangzhuang Feng & Weiying Feng & Zhen Li & José Manuel Gonçalves, 2024. "Influence and Mechanism of Fertilization and Irrigation of Heavy Metal Accumulation in Salinized Soils," Agriculture, MDPI, vol. 14(10), pages 1-20, September.
    3. Wang, Ning & Zhang, Tonghui & Cong, Anqi & Lian, Jie, 2023. "Integrated application of fertilization and reduced irrigation improved maize (Zea mays L.) yield, crop water productivity and nitrogen use efficiency in a semi-arid region," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Xiaopeng Shi & Xin Song & Guibin Zhao & Qifeng Yang & Lynette K. Abbott & Fengmin Li, 2022. "Manure Application Is the Key to Improving Soil Quality of New Terraces," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    3. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    4. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    5. Kalaitzandonakes, Nicholas & Lusk, Jayson & Magnier, Alexandre, 2018. "The price of non-genetically modified (non-GM) food," Food Policy, Elsevier, vol. 78(C), pages 38-50.
    6. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    7. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    8. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    9. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    10. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    11. Bang, Rasmus & Hansen, Bjørn Gunnar & Guajardo, Mario & Sommerseth, Jon Kristian & Flaten, Ola & Asheim, Leif Jarle, 2024. "Conventional or organic cattle farming? Trade-offs between crop yield, livestock capacity, organic premiums, and government payments," Agricultural Systems, Elsevier, vol. 218(C).
    12. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    13. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    14. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    15. Wang, Shulan & Wang, Hao & Zhang, Yuanhong & Wang, Rui & Zhang, Yujiao & Xu, Zonggui & Jia, Guangcan & Wang, Xiaoli & Li, Jun, 2018. "The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 376-384.
    16. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    17. Rana Shahzad Noor & Fiaz Hussain & Muhammad Umar Farooq & Muhammad Umair, 2020. "Cost And Profitability Analysis Of Cherry Production: The Case Study Of District Quetta, Pakistan," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(2), pages 74-80, June.
    18. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    19. I. P. Sapinas & L. K. Abbott, 2021. "Soil Fertility Management Based on Certified Organic Agriculture Standards - a Review," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 9(2), pages 1-1, December.
    20. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.