IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15166-d973935.html
   My bibliography  Save this article

Manure Application Is the Key to Improving Soil Quality of New Terraces

Author

Listed:
  • Xiaopeng Shi

    (State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, College of Ecology, Lanzhou University, Lanzhou 730000, China)

  • Xin Song

    (State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, College of Ecology, Lanzhou University, Lanzhou 730000, China)

  • Guibin Zhao

    (Gansu Provincial Agricultural Technology Extension Station, Lanzhou 730000, China)

  • Qifeng Yang

    (Gansu Provincial Department of Agriculture and Rural Affairs, Lanzhou 730000, China)

  • Lynette K. Abbott

    (UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia)

  • Fengmin Li

    (State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, College of Ecology, Lanzhou University, Lanzhou 730000, China)

Abstract

Building level terraces is a crucial strategy for agriculture development in mountainous areas. There have been many studies on improving the soil quality of terraces, but the main factors involved are still unclear. We conducted an 18-year long-term experiment on a newly built terrace with four fertilization treatments: applied mineral nitrogen and phosphorus fertilizer (NP), applied sheep manure (M), applied sheep manure combined with mineral nitrogen and phosphorus fertilizer (MNP), and an unfertilized control (CK). A soil quality index (SQI) was used to evaluate the dynamic evolution of soil quality in the terrace for these fertilization treatments, and the relationship between soil quality and crop yield was investigated. A total data set (TDS) and a minimum data set (MDS) were used to calculate the SQIs according to the linear scoring method and the nonlinear scoring method of soil indicators, respectively. The results showed that the SQI for all treatments increased over time, and both the SQI and crop yield were significantly increased by fertilization treatments. The SQI of all three fertilized treatments in the sixth rotation cycle increased by 38–313% compared to the control in the first rotation cycle (3 years). There was no significant difference in the SQI between the M and MNP, but it was significantly higher than for both the NP and CK. During the 18 year experimental period, the SQI for the M and MNP treatments showed an upward trend, while it tended to be stable after initially increasing for the NP and CK treatments. For each treatment, the SQI calculated by the linear and nonlinear scoring methods using the MDS and TDS were all significantly positively correlated, and were also significantly positively correlated with crop yield. Overall, the soil quality in the terrace was increased by fertilization; however, the application of manure was the key to a rapid increase in soil quality, and the SQI measurements demonstrated a clear link between the soil quality of the terrace and crop yield.

Suggested Citation

  • Xiaopeng Shi & Xin Song & Guibin Zhao & Qifeng Yang & Lynette K. Abbott & Fengmin Li, 2022. "Manure Application Is the Key to Improving Soil Quality of New Terraces," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15166-:d:973935
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gai, Xiapu & Liu, Hongbin & Liu, Jian & Zhai, Limei & Yang, Bo & Wu, Shuxia & Ren, Tianzhi & Lei, Qiuliang & Wang, Hongyuan, 2018. "Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain," Agricultural Water Management, Elsevier, vol. 208(C), pages 384-392.
    2. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    3. Liu, Chang-An & Li, Feng-Rui & Zhou, Li-Min & Zhang, Rong-He & Yu-Jia, & Lin, Shi-Ling & Wang, Li-Jun & Siddique, Kadambot H.M. & Li, Feng-Min, 2013. "Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 117(C), pages 123-132.
    4. Atanu Mukherjee & Rattan Lal, 2014. "Comparison of Soil Quality Index Using Three Methods," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    5. Karlen, D. L. & Hurley, E. & Andrews, S & Cambardella, C. & Meek, M. & Duffy, Michael & Mallarenio, A., 2006. "Crop Rotation Effects on Soil Quality at Three Northern Corn/Soybean Locations," Staff General Research Papers Archive 12580, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Cheng, Yu & Luo, Min & Zhang, Tonggang & Yan, Sihui & Wang, Chun & Dong, Qin’ge & Feng, Hao & Zhang, Tibin & Kisekka, Isaya, 2023. "Organic substitution improves soil structure and water and nitrogen status to promote sunflower (Helianthus annuus L.) growth in an arid saline area," Agricultural Water Management, Elsevier, vol. 283(C).
    4. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Movedi, Ermes & Valiante, Daniele & Colosio, Alessandro & Corengia, Luca & Cossa, Stefano & Confalonieri, Roberto, 2022. "A new approach for modeling crop-weed interaction targeting management support in operational contexts: A case study on the rice weeds barnyardgrass and red rice," Ecological Modelling, Elsevier, vol. 463(C).
    6. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    7. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    8. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    9. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    10. Seck, Abdoulaye & Thiam, Djiby Racine, 2022. "Understanding consumer attitudes to and valuation of organic food in Sub-Saharan Africa: A double-bound contingent method applied in Dakar, Senegal," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 17(1), March.
    11. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    12. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    13. Kalaitzandonakes, Nicholas & Lusk, Jayson & Magnier, Alexandre, 2018. "The price of non-genetically modified (non-GM) food," Food Policy, Elsevier, vol. 78(C), pages 38-50.
    14. Janet MacFall & Joanna Lelekacs & Todd LeVasseur & Steve Moore & Jennifer Walker, 2015. "Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 608-622, December.
    15. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    16. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    17. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    18. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    19. Delate, Kathleen & Cambardella, Cynthia & Chase, Craig & Turnbull, Robert, 2015. "A Review of Long-Term Organic Comparison Trials in the U.S," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(3 Special).
    20. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15166-:d:973935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.