IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p100-d1010519.html
   My bibliography  Save this article

Monthly Runoff Forecasting Based on Interval Sliding Window and Ensemble Learning

Author

Listed:
  • Jinyu Meng

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Zengchuan Dong

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Yiqing Shao

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Shengnan Zhu

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Shujun Wu

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

Abstract

In recent years, machine learning, a popular artificial intelligence technique, has been successfully applied to monthly runoff forecasting. Monthly runoff autoregressive forecasting using machine learning models generally uses a sliding window algorithm to construct the dataset, which requires the selection of the optimal time step to make the machine learning tool function as intended. Based on this, this study improved the sliding window algorithm and proposes an interval sliding window (ISW) algorithm based on correlation coefficients, while the least absolute shrinkage and selection operator (LASSO) method was used to combine three machine learning models, Random Forest (RF), LightGBM, and CatBoost, into an ensemble to overcome the preference problem of individual models. Example analyses were conducted using 46 years of monthly runoff data from Jiutiaoling and Zamusi stations in the Shiyang River Basin, China. The results show that the ISW algorithm can effectively handle monthly runoff data and that the ISW algorithm produced a better dataset than the sliding window algorithm in the machine learning models. The forecast performance of the ensemble model combined the advantages of the single models and achieved the best forecast accuracy.

Suggested Citation

  • Jinyu Meng & Zengchuan Dong & Yiqing Shao & Shengnan Zhu & Shujun Wu, 2022. "Monthly Runoff Forecasting Based on Interval Sliding Window and Ensemble Learning," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:100-:d:1010519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    2. Vishnu Suresh & Przemyslaw Janik & Jacek Rezmer & Zbigniew Leonowicz, 2020. "Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm," Energies, MDPI, vol. 13(3), pages 1-15, February.
    3. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    4. Huaping Huang & Zhongmin Liang & Binquan Li & Dong Wang & Yiming Hu & Yujie Li, 2019. "Combination of Multiple Data-Driven Models for Long-Term Monthly Runoff Predictions Based on Bayesian Model Averaging," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3321-3338, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farshid Rezaei & Rezvane Ghorbani & Najmeh Mahjouri, 2022. "Improving Daily and Monthly River Discharge Forecasts using Geostatistical Ensemble Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5063-5089, October.
    2. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Duan, Jizheng & Chang, Mingheng & Chen, Bolong, 2021. "Short-term wind speed forecasting using recurrent neural networks with error correction," Energy, Elsevier, vol. 217(C).
    3. He, Chaofei & Chen, Fulong & Long, Aihua & Qian, YuXia & Tang, Hao, 2023. "Improving the precision of monthly runoff prediction using the combined non-stationary methods in an oasis irrigation area," Agricultural Water Management, Elsevier, vol. 279(C).
    4. Wei Li & Xiaosheng Wang & Shujiang Pang & Haiying Guo, 2022. "A Runoff Prediction Model Based on Nonhomogeneous Markov Chain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1431-1442, March.
    5. Hasala Dharmawardena & Ganesh Kumar Venayagamoorthy, 2022. "Distributed Volt-Var Curve Optimization Using a Cellular Computational Network Representation of an Electric Power Distribution System," Energies, MDPI, vol. 15(12), pages 1-18, June.
    6. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    7. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    8. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    9. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    10. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    11. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    12. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    13. Oreshkin, Boris N. & Dudek, Grzegorz & Pełka, Paweł & Turkina, Ekaterina, 2021. "N-BEATS neural network for mid-term electricity load forecasting," Applied Energy, Elsevier, vol. 293(C).
    14. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    15. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    16. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
    17. Chen Zhao & Xia Zhao & Zhao Li & Qiong Zhang, 2022. "XGBoost-DNN Mixed Model for Predicting Driver’s Estimation on the Relative Motion States during Lane-Changing Decisions: A Real Driving Study on the Highway," Sustainability, MDPI, vol. 14(11), pages 1-23, June.
    18. Shouxiang Wang & Pengfei Dong & Yingjie Tian, 2017. "A Novel Method of Statistical Line Loss Estimation for Distribution Feeders Based on Feeder Cluster and Modified XGBoost," Energies, MDPI, vol. 10(12), pages 1-17, December.
    19. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    20. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:100-:d:1010519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.