IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v71y2025i1id101-2023-rae.html
   My bibliography  Save this article

An effective machine learning model for the estimation of reference evapotranspiration under data-limited conditions

Author

Listed:
  • Saravanan Karuppanan

    (Dhanalakshmi Srinivasan College of Engineering and Technology, Mamallapuram, Chennai, India)

  • Saravanan Ramasamy

    (Centre for Water Resources, Anna University, Chennai, India)

  • Balaji Lakshminarayanan

    (Centre for Water Resources, Anna University, Chennai, India)

  • Sreemanthrarupini Nariangadu Anuthaman

    (Centre for Water Resources, Anna University, Chennai, India)

Abstract

Reference crop evapotranspiration (ETo) is a vital hydrological component influenced by various climate variables that impact the water and energy balances. It plays a crucial role in determining crop water requirements and irrigation scheduling. Despite the availability of numerous approaches for estimation, accurate and reliable ETo estimation is essential for effective irrigation water management. Therefore, this study aimed to identify the most suitable machine learning model for assessing ETo using observed daily values of limited input parameters in tropical savannah climate regions. Three machine learning models - a long short-term memory (LSTM) neural network, an artificial neural network (ANN), and support vector regression (SVM) - were developed with four different input combinations, and their performances were compared with those of locally calibrated empirical equations. The models were evaluated using statistical indicators such as the root mean square error (RMSE), coefficient of determination (R2), and the Nash-Sutcliffe efficiency (NSE). The results showed that the LSTM model, using the combination of temperature and wind speed, provided more reliable predictions with R2 values greater than 0.75 and RMSEs less than 0.63 mm.day-1 across all the considered weather stations. This study concludes that, especially under limited data conditions, the developed deep learning model improves the ETo estimation more accurately than empirical models for tropical climatic regions.

Suggested Citation

  • Saravanan Karuppanan & Saravanan Ramasamy & Balaji Lakshminarayanan & Sreemanthrarupini Nariangadu Anuthaman, 2025. "An effective machine learning model for the estimation of reference evapotranspiration under data-limited conditions," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 71(1), pages 22-37.
  • Handle: RePEc:caa:jnlrae:v:71:y:2025:i:1:id:101-2023-rae
    DOI: 10.17221/101/2023-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/101/2023-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/101/2023-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/101/2023-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohd Khairul Idlan Muhammad & Mohamed Salem Nashwan & Shamsuddin Shahid & Tarmizi bin Ismail & Young Hoon Song & Eun-Sung Chung, 2019. "Evaluation of Empirical Reference Evapotranspiration Models Using Compromise Programming: A Case Study of Peninsular Malaysia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    2. Xiaohu Wen & Jianhua Si & Zhibin He & Jun Wu & Hongbo Shao & Haijiao Yu, 2015. "Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3195-3209, July.
    3. Vishwakarma, Dinesh Kumar & Pandey, Kusum & Kaur, Arshdeep & Kushwaha, N.L. & Kumar, Rohitashw & Ali, Rawshan & Elbeltagi, Ahmed & Kuriqi, Alban, 2022. "Methods to estimate evapotranspiration in humid and subtropical climate conditions," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Ferreira, Lucas Borges & da Cunha, Fernando França, 2020. "New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning," Agricultural Water Management, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Kang, Yan & Chen, Peiru & Cheng, Xiao & Zhang, Shuo & Song, Songbai, 2022. "Novel hybrid machine learning framework with decomposition–transformation and identification of key modes for estimating reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Jitendra Rajput & Man Singh & Khajanchi Lal & Manoj Khanna & Arjamadutta Sarangi & Joydeep Mukherjee & Shrawan Singh, 2024. "Selection of alternate reference evapotranspiration models based on multi-criteria decision ranking for semiarid climate," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11171-11216, May.
    4. Bellido-Jiménez, Juan Antonio & Estévez, Javier & García-Marín, Amanda Penélope, 2021. "New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Amarjeet Kumar & Vijay Kumar Singh & Bhagwat Saran & Nadhir Al-Ansari & Vinay Pratap Singh & Sneha Adhikari & Anjali Joshi & Narendra Kumar Singh & Dinesh Kumar Vishwakarma, 2022. "Development of Novel Hybrid Models for Prediction of Drought- and Stress-Tolerance Indices in Teosinte Introgressed Maize Lines Using Artificial Intelligence Techniques," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    6. Abhinav Kumar Singh & Pankaj Kumar & Rawshan Ali & Nadhir Al-Ansari & Dinesh Kumar Vishwakarma & Kuldeep Singh Kushwaha & Kanhu Charan Panda & Atish Sagar & Ehsan Mirzania & Ahmed Elbeltagi & Alban Ku, 2022. "An Integrated Statistical-Machine Learning Approach for Runoff Prediction," Sustainability, MDPI, vol. 14(13), pages 1-30, July.
    7. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    8. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    9. Yamaç, Sevim Seda, 2021. "Artificial intelligence methods reliably predict crop evapotranspiration with different combinations of meteorological data for sugar beet in a semiarid area," Agricultural Water Management, Elsevier, vol. 254(C).
    10. M. Babaei & H. Ketabchi, 2022. "Determining Groundwater Recharge Rate with a Distributed Model and Remote Sensing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5401-5423, November.
    11. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    12. Phon Sheng Hou & Lokman Mohd Fadzil & Selvakumar Manickam & Mahmood A. Al-Shareeda, 2023. "Vector Autoregression Model-Based Forecasting of Reference Evapotranspiration in Malaysia," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    13. Dilip Kumar Roy & Kowshik Kumar Saha & Mohammad Kamruzzaman & Sujit Kumar Biswas & Mohammad Anower Hossain, 2021. "Hierarchical Fuzzy Systems Integrated with Particle Swarm Optimization for Daily Reference Evapotranspiration Prediction: a Novel Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5383-5407, December.
    14. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
    15. Bellido-Jiménez, Juan A. & Estévez, Javier & García-Marín, Amanda P., 2022. "A regional machine learning method to outperform temperature-based reference evapotranspiration estimations in Southern Spain," Agricultural Water Management, Elsevier, vol. 274(C).
    16. Jiang, Shouzheng & Wu, Jie & Wang, Zhihui & He, Ziling & Wang, Mingjun & Yao, Weiwei & Feng, Yu, 2023. "Spatiotemporal variations of cropland carbon sequestration and water loss across China," Agricultural Water Management, Elsevier, vol. 287(C).
    17. Vishwakarma, Dinesh Kumar & Pandey, Kusum & Kaur, Arshdeep & Kushwaha, N.L. & Kumar, Rohitashw & Ali, Rawshan & Elbeltagi, Ahmed & Kuriqi, Alban, 2022. "Methods to estimate evapotranspiration in humid and subtropical climate conditions," Agricultural Water Management, Elsevier, vol. 261(C).
    18. Kai Lun Chong & Sai Hin Lai & Yu Yao & Ali Najah Ahmed & Wan Zurina Wan Jaafar & Ahmed El-Shafie, 2020. "Performance Enhancement Model for Rainfall Forecasting Utilizing Integrated Wavelet-Convolutional Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2371-2387, June.
    19. Mohammad Rajab Houmsi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Kamal Ahmed & Ghaith Falah Ziarh & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim, 2019. "Spatial Shift of Aridity and Its Impact on Land Use of Syria," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    20. Valle Júnior, Luiz C.G. & Ventura, Thiago M. & Gomes, Raphael S.R. & de S. Nogueira, José & de A. Lobo, Francisco & Vourlitis, George L. & Rodrigues, Thiago R., 2020. "Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna," Agricultural Water Management, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:71:y:2025:i:1:id:101-2023-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.