IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v267y2022ics0378377422001779.html
   My bibliography  Save this article

Multi-dimensional evaluation of water footprint and implication for crop production: A case study in Hetao Irrigation District, China

Author

Listed:
  • Yin, Jieling
  • Wu, Nan
  • Engel, Bernie A.
  • Hua, En
  • Zhang, Fuyao
  • Li, Xin
  • Wang, Yubao

Abstract

Developing water-saving agriculture must balance the interests of stakeholders in terms of economic benefits, food and ecological security objectives. The production-based water footprint (PWF), the energy-based water footprint (EWF), and the net benefits-based water footprint (NBWF) (including grey water footprint (GWF)) can be used to evaluate food and ecological security, water use efficiency, and benefits objectives. However, little attention is paid to the multi-dimensional evaluation of water consumption in agriculture. This study quantified the annual PWF, EWF, and NBWF of grain crops, cash crops, and feed crops in the Hetao Irrigation District (HID) over 1995–2017, and analyzed their spatiotemporal evolution characteristics and comparative advantages, then clarified the implications of the three types of water footprints for stakeholders in the HID for crop planning. The results showed the water use efficiency was decreasing and the benefits were increasing. The GWF deserves more attention as it contributed 35%− 40% of the total water footprint. The comparative advantages of the three water footprints revealed that the current crop distribution in the HID only favors benefits. Considering the crop distribution issues in the HID, the adjustment objectives can be determined by combining the connotations of the three types of water footprints, GWF, PWFblue-green/EWFblue-green, and NBWFblue-green, corresponding to stakeholders’ environmental and social-economic interests. This study could provide basic guidance for crop planning and agricultural water management in the HID and similar areas.

Suggested Citation

  • Yin, Jieling & Wu, Nan & Engel, Bernie A. & Hua, En & Zhang, Fuyao & Li, Xin & Wang, Yubao, 2022. "Multi-dimensional evaluation of water footprint and implication for crop production: A case study in Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:agiwat:v:267:y:2022:i:c:s0378377422001779
    DOI: 10.1016/j.agwat.2022.107630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422001779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vanham, D., 2016. "Does the water footprint concept provide relevant information to address the water–food–energy–ecosystem nexus?," Ecosystem Services, Elsevier, vol. 17(C), pages 298-307.
    2. Ma, Weijing & Meng, Lihong & Wei, Feili & Opp, Christian & Yang, Dewei, 2021. "Spatiotemporal variations of agricultural water footprint and socioeconomic matching evaluation from the perspective of ecological function zone," Agricultural Water Management, Elsevier, vol. 249(C).
    3. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    4. Luo, Wanqi & Chen, Mengting & Kang, Yinhong & Li, Wenping & Li, Dan & Cui, Yuanlai & Khan, Shahbaz & Luo, Yufeng, 2022. "Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Carvalho, Aline Martins de & Verly Jr, Eliseu & Marchioni, Dirce Maria & Jones, Andrew D., 2021. "Measuring sustainable food systems in Brazil: A framework and multidimensional index to evaluate socioeconomic, nutritional, and environmental aspects," World Development, Elsevier, vol. 143(C).
    6. Bazrafshan, Ommolbanin & Zamani, Hossein & Ramezanietedli, Hadi & Gerkaninezhad Moshizi, Zahra & Shamili, Mansoureh & Ismaelpour, Yahya & Gholami, Hamid, 2020. "Improving water management in date palms using economic value of water footprint and virtual water trade concepts in Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teng Gao & Mingye Zhang & Chunzi Zhao, 2023. "An Evaluation of the Sustainability of the Urban Water Resources of Yanbian Korean Autonomous Prefecture, China," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    2. Wu, Nan & Zhang, Jianyun & Gao, Xinyu & Wang, Xiaojun & Wu, Mengyang & Cao, Xinchun, 2023. "Distribution and drivers for blue water dependence in crop production in China, 1999–2018," Agricultural Water Management, Elsevier, vol. 290(C).
    3. Li, Mo & Chen, Yingshan & Liu, Dong & Xue, Min & Wang, Yijia & Fu, Qiang, 2024. "Synergetic management of the water-energy-food nexus for cropland ecosystems under climate change: Toward a multistakeholder-based systematic optimization approach," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yanqi & Lin, Yifan & Huo, Zailin & Zhang, Chenglong & Wang, Chaozi & Xue, Jingyuan & Huang, Guanhua, 2022. "Spatio-temporal variation of irrigation water requirements for wheat and maize in the Yellow River Basin, China, 1974–2017," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Yeray Hernandez & Gustavo Naumann & Serafin Corral & Paulo Barbosa, 2020. "Water Footprint Expands with Gross Domestic Product," Sustainability, MDPI, vol. 12(20), pages 1-6, October.
    5. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    6. Zhang, Qingsong & Sun, Jiahao & Dai, Changlei & Zhang, Guangxin & Wu, Yanfeng, 2024. "Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields," Agricultural Water Management, Elsevier, vol. 298(C).
    7. Jiaxin Sun & Liwen Chen & Peng Qi & Guangxin Zhang, 2024. "Agricultural Irrigation Water Requirement and Its Response to Climatic Factors Based on Remote Sensing and Single Crop Coefficient Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 5215-5233, October.
    8. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Du, Ruiqi & Chen, Junying & Zhang, Zhitao & Chen, Yinwen & He, Yujie & Yin, Haoyuan, 2022. "Simultaneous estimation of surface soil moisture and salinity during irrigation with the moisture-salinity-dependent spectral response model," Agricultural Water Management, Elsevier, vol. 265(C).
    11. Jude Anayochukwu Mbanasor & Ogbonnaya Ukeh Oteh & Nnanna Mba Agwu & Chigozirim Ndubuisi Onwusiribe & Nwanneka Cynthia Ibem & Chibuzo Okpokiri & Ambrose Ogbonna Oloveze, 2022. "Wheat or cassava flour? Marketing and willingness to pay for cassava flour confectionery in Nigeria," Economia agro-alimentare, FrancoAngeli Editore, vol. 24(3), pages 1-25.
    12. Emine Elmaslar Özbaş & Özcan Akın & Sinan Güneysu & H. Kurtuluş Özcan & Atakan Öngen, 2022. "Changes occurring in consumption habits of people during COVID-19 pandemic and the water footprint," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8504-8520, June.
    13. Chen, Mengting & Linker, Raphael & Wu, Conglin & Xie, Hua & Cui, Yuanlai & Luo, Yufeng & Lv, Xinwei & Zheng, Shizong, 2022. "Multi-objective optimization of rice irrigation modes using ACOP-Rice model and historical meteorological data," Agricultural Water Management, Elsevier, vol. 272(C).
    14. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Zhang, Qingsong & Sun, Jiahao & Zhang, Guangxin & Liu, Xuemei & Wu, Yanfeng & Sun, Jingxuan & Hu, Boting, 2023. "Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management," Agricultural Water Management, Elsevier, vol. 285(C).
    16. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    17. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    18. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    19. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    20. Phon Sheng Hou & Lokman Mohd Fadzil & Selvakumar Manickam & Mahmood A. Al-Shareeda, 2023. "Vector Autoregression Model-Based Forecasting of Reference Evapotranspiration in Malaysia," Sustainability, MDPI, vol. 15(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:267:y:2022:i:c:s0378377422001779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.