IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v290y2023ics0378377423004584.html
   My bibliography  Save this article

Distribution and drivers for blue water dependence in crop production in China, 1999–2018

Author

Listed:
  • Wu, Nan
  • Zhang, Jianyun
  • Gao, Xinyu
  • Wang, Xiaojun
  • Wu, Mengyang
  • Cao, Xinchun

Abstract

The process of blue water used in crop cultivation has both natural and economic properties due to the intervention of irrigation facilities. This study revealed crop water use (CWU) from 1999 to 2018 in each province of China based on water footprint theory, and then established the blue water dependence index (BDI) to evaluate the dependence of agricultural cultivation on irrigation water from the perspective of water withdraw, and conducted a spatial and temporal pattern analysis.The influencing factors and structural pathways of BDI were explored using least squares structural equation modeling (PLS-SEM) at national and regional scales. Results indicated that the annual amount of water used for crop production in China exceeded 900.0 Gm³. The growth in CWU from 1999 to 2018 for cash crops and grain crops was 145.4 Gm³ and 74.4 Gm³, respectively.BDI of all crops was 0.281 over the study period in China, with grain crops being 2.6 times more dependent on blue water resources than cash crops. Xinjiang, with annual average BDI of 0.716, 0.805, and 0.620 for all, grain and cash crops, respectively, has the highest irrigation demand. The PLS-SEM results showed a significant causal relationship between the economy and BDI, with obvious regional differences in structural path analysis. Based on the analysis of agricultural water use, the regions can adjust the structure of crop cultivation, optimize the allocation of water and soil resources, expand the cultivation of fodder grains and promote steady economic growth, to achieve a "win-win" situation of ensuring food security and sustainable use of agricultural water resources.

Suggested Citation

  • Wu, Nan & Zhang, Jianyun & Gao, Xinyu & Wang, Xiaojun & Wu, Mengyang & Cao, Xinchun, 2023. "Distribution and drivers for blue water dependence in crop production in China, 1999–2018," Agricultural Water Management, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004584
    DOI: 10.1016/j.agwat.2023.108593
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Mingtao & Yu, Qiangyi & Li, Yan & Shi, Zhou & Wu, Wenbin, 2022. "Increasing multiple cropping for land use intensification: The role of crop choice," Land Use Policy, Elsevier, vol. 112(C).
    2. Xu, Hang & Yang, Rui, 2022. "Does agricultural water conservation policy necessarily reduce agricultural water extraction? Evidence from China," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Cao, Xinchun & Li, Yueyao & Wu, Mengyang, 2022. "Irrigation water use and efficiency assessment coupling crop cultivation, commutation and consumption processes," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Lu, Chengpeng & Ji, Wei & Hou, Muchen & Ma, Tianyang & Mao, Jinhuang, 2022. "Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    6. Xu, Hang & Song, Jianfeng, 2022. "Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Yin, Jieling & Wu, Nan & Engel, Bernie A. & Hua, En & Zhang, Fuyao & Li, Xin & Wang, Yubao, 2022. "Multi-dimensional evaluation of water footprint and implication for crop production: A case study in Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 267(C).
    8. Haida, Christin & Chapagain, Ashok K. & Rauch, Wolfgang & Riede, Maximilian & Schneider, Katrin, 2019. "From water footprint to climate change adaptation: Capacity development with teenagers to save water," Land Use Policy, Elsevier, vol. 80(C), pages 456-463.
    9. Cao, Xinchun & Bao, Yutong & Li, Yueyao & Li, Jianni & Wu, Mengyang, 2023. "Unravelling the effects of crop blue, green and grey virtual water flows on regional agricultural water footprint and scarcity," Agricultural Water Management, Elsevier, vol. 278(C).
    10. Tian, Xu & Yu, Xiaohua, 2015. "Using semiparametric models to study nutrition improvement and dietary change with different indices: The case of China," Food Policy, Elsevier, vol. 53(C), pages 67-81.
    11. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    12. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Hongrong & Zhuo, La & Wang, Wei & Wu, Pute, 2023. "Resilience assessment of blue and green water resources for staple crop production in China," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    4. Cui, Simeng & Wu, Mengyang & Huang, Xuan & Wang, Xiaojun & Cao, Xinchun, 2022. "Sustainability and assessment of factors driving the water-energy-food nexus in pumped irrigation systems," Agricultural Water Management, Elsevier, vol. 272(C).
    5. Yin, Yali & Tong, Jiajun & Gu, Jiali & Sun, Shikun & Sun, Jingxin & Zhao, Jinfeng & Tang, Yihe & Wu, Pute & Wang, Yubao & Wu, Zhaodan, 2024. "Socio-hydrology pathway of grain virtual water flow in China," Agricultural Water Management, Elsevier, vol. 292(C).
    6. Shah, Wasi Ul Hassan & Hao, Gang & Yasmeen, Rizwana & Yan, Hong & Shen, Jintao & Lu, Yuting, 2023. "Role of China's agricultural water policy reforms and production technology heterogeneity on agriculture water usage efficiency and total factor productivity change," Agricultural Water Management, Elsevier, vol. 287(C).
    7. Xu, Hang & Yang, Rui, 2022. "Does agricultural water conservation policy necessarily reduce agricultural water extraction? Evidence from China," Agricultural Water Management, Elsevier, vol. 274(C).
    8. Zijun Luo & Xu Tian, 2018. "Can China’s meat imports be sustainable? A case study of mad cow disease," Applied Economics, Taylor & Francis Journals, vol. 50(9), pages 1022-1042, February.
    9. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    10. Drew, Mark & Crase, Lin, 2023. "‘More Crop per Drop’ and water use efficiency in the National Water Policy of Pakistan," Agricultural Water Management, Elsevier, vol. 288(C).
    11. Yunfei Feng & Yi Zhang & Zhaodan Wu & Quanliang Ye & Xinchun Cao, 2023. "Evaluation of Agricultural Eco-Efficiency and Its Spatiotemporal Differentiation in China, Considering Green Water Consumption and Carbon Emissions Based on Undesired Dynamic SBM-DEA," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    12. Huang, Yingying & Tian, Xu, 2019. "Food accessibility, diversity of agricultural production and dietary pattern in rural China," Food Policy, Elsevier, vol. 84(C), pages 92-102.
    13. Huaibin Wei & Yao Wang & Jing Liu & Yongxiao Cao & Xinyu Zhang, 2023. "Spatiotemporal Variations of Water Eutrophication and Non-Point Source Pollution Prevention and Control in the Main Stream of the Yellow River in Henan Province from 2012 to 2021," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    14. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Ruifan Xu & Jianzhong Gao, 2023. "Evolutionary Trends, Regional Differences and Influencing Factors of the Green Efficiency of Agricultural Water Use in China Based on WF-GTWR Model," IJERPH, MDPI, vol. 20(3), pages 1-24, January.
    16. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    17. Bixuan Yang & Frank Asche & Tao Li, 2022. "Consumer behavior and food prices during the COVID‐19 pandemic: Evidence from Chinese cities," Economic Inquiry, Western Economic Association International, vol. 60(3), pages 1437-1460, July.
    18. Fei Gao & Yi Luo & Congju Zhao, 2023. "Effects of Climate and Land-Use Change on the Supply and Demand Relationship of Water Provision Services in the Yellow River Basin," Land, MDPI, vol. 12(12), pages 1-19, November.
    19. Aijun Guo & Rong Zhang & Xiaoyu Song & Fanglei Zhong & Daiwei Jiang & Yuan Song, 2021. "Predicting the Water Rebound Effect in China under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 18(3), pages 1-24, February.
    20. Shen, Ge & Yu, Qiangyi & Zhou, Qingbo & Wang, Cong & Wu, Wenbin, 2023. "From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity," Agricultural Systems, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.