IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i6d10.1007_s10668-021-01797-z.html
   My bibliography  Save this article

Changes occurring in consumption habits of people during COVID-19 pandemic and the water footprint

Author

Listed:
  • Emine Elmaslar Özbaş

    (Istanbul University-Cerrahpaşa)

  • Özcan Akın

    (Düzce University)

  • Sinan Güneysu

    (Istanbul University-Cerrahpaşa)

  • H. Kurtuluş Özcan

    (Istanbul University-Cerrahpaşa)

  • Atakan Öngen

    (Istanbul University-Cerrahpaşa)

Abstract

In this study, it has been aimed to determine the difference between water footprint values of individuals with different socio-economical levels, living in various cities, before and during COVID-19 pandemic period. For this purpose, a questionnaire study has been made and data obtained because of questionnaire have been processes in a water footprint calculation module. Data obtained from questionnaires have also been evaluated statistically in SPSS application. According to the findings obtained, while average water footprint before COVID-19 pandemic has been calculated as 4178.42 L/day, average water footprint during COVID-19 pandemic period has been calculated as 4606.18 L/day. It was determined that the percentage of participants whose water footprint increased during the COVID-19 pandemic period at all education levels was higher than other participants. When the water footprint values of the participants with an income level of 7000 TL and above were compared with the water footprint values of other income groups, it was observed that the water footprint values of the participants with an income of 7000 TL and above increased during the COVID-19 pandemic compared to before the COVID-19 pandemic. When the water footprint values of individuals according to age groups are examined, it has been determined that the water footprint values of individuals tend to increase in all age groups (except for the 51–60 age range) during the COVID-19 pandemic compared to before the COVID-19 pandemic. It has been seen that in the monthly clothing expenses and car washing numbers of participants, there was a tendency to decrease and that in their monthly kitchen expenditures there was a tendency to increase. Because of statistical evaluations, it was seen that there was a meaningful correlation between change in water footprint values and weekly shower numbers, weekly laundry washing numbers, and monthly kitchen expenses. Despite the increase in water consumption with many daily activities, it can be said that the average water footprint value did not increase much due to the decrease in clothing expenditures of the participants during the pandemic process, the change in car washing frequencies, and the fact that red meat consumption did not increase in general despite the increase in kitchen expenses.

Suggested Citation

  • Emine Elmaslar Özbaş & Özcan Akın & Sinan Güneysu & H. Kurtuluş Özcan & Atakan Öngen, 2022. "Changes occurring in consumption habits of people during COVID-19 pandemic and the water footprint," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8504-8520, June.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:6:d:10.1007_s10668-021-01797-z
    DOI: 10.1007/s10668-021-01797-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01797-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01797-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klemeš, Jiří Jaromír & Fan, Yee Van & Tan, Raymond R. & Jiang, Peng, 2020. "Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    2. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    3. Bazrafshan, Ommolbanin & Zamani, Hossein & Ramezanietedli, Hadi & Gerkaninezhad Moshizi, Zahra & Shamili, Mansoureh & Ismaelpour, Yahya & Gholami, Hamid, 2020. "Improving water management in date palms using economic value of water footprint and virtual water trade concepts in Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veknesh Arumugam & Ismail Abdullah & Irwan Syah Md Yusoff & Nor Liza Abdullah & Ramli Mohd Tahir & Ahadi Mohd Nasir & Ammar Ehsan Omar & Muhammad Heikal Ismail, 2021. "The Impact of COVID-19 on Solid Waste Generation in the Perspectives of Socioeconomic and People’s Behavior: A Case Study in Serdang, Malaysia," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    2. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    3. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    4. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    5. Marcela Prokopová & Luca Salvati & Gianluca Egidi & Ondřej Cudlín & Renata Včeláková & Radek Plch & Pavel Cudlín, 2019. "Envisioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    6. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    7. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    8. Abdulai, Issaka & Hoffmann, Munir P. & Jassogne, Laurence & Asare, Richard & Graefe, Sophie & Tao, Hsiao-Hang & Muilerman, Sander & Vaast, Philippe & Van Asten, Piet & Läderach, Peter & Rötter, Reimun, 2020. "Variations in yield gaps of smallholder cocoa systems and the main determining factors along a climate gradient in Ghana," Agricultural Systems, Elsevier, vol. 181(C).
    9. Heider, Katharina & Quaranta, Emanuele & García Avilés, José María & Rodriguez Lopez, Juan Miguel & Balbo, Andrea L. & Scheffran, Jürgen, 2022. "Reinventing the wheel – The preservation and potential of traditional water wheels in the terraced irrigated landscapes of the Ricote Valley, southeast Spain," Agricultural Water Management, Elsevier, vol. 259(C).
    10. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    11. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    12. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    13. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    14. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    15. Thorn, Alexandra M. & Baker, Michael J. & Peters, Christian J., 2021. "Estimating biological capacity for grass-finished ruminant meat production in New England and New York," Agricultural Systems, Elsevier, vol. 189(C).
    16. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    17. Quintero-Angel, Mauricio & Coles, Ashley & Duque-Nivia, Andrés A., 2021. "A historical perspective of landscape appropriation and land use transitions in the Colombian South Pacific," Ecological Economics, Elsevier, vol. 181(C).
    18. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    19. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).
    20. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:6:d:10.1007_s10668-021-01797-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.