IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v263y2022ics037837742100723x.html
   My bibliography  Save this article

Short-term legacy effects of rice season irrigation and fertilization on the soil bacterial community of the subsequent wheat season in a rice-wheat rotation system

Author

Listed:
  • Tian, Guangli
  • Qiu, Husen
  • Wang, Yuting
  • Zhou, Xinguo
  • Li, Dongwei

Abstract

Soil properties and microbial diversity are markedly enhanced by the long-term effects of organic fertilizers. However, the short-term impacts of inorganic and organic fertilizers vary in different agroecosystems, especially when combined with different irrigation conditions. Here, we examined the influence of different fertilizer types (NPK: mineral fertilizer, NPKM: mineral fertilizer plus organic fertilizer, NPKWS: mineral fertilizer plus straw) combined with different irrigation regimes (AWMID: shallow water layer, AWMOD: alternate wetting and moderate drying, AWSD: alternate wetting and severe drying) on the soil properties and bacterial communities at the wheat harvest stage of a one-year rice-wheat rotation system (RWRS), in the rice zone along the Yellow River of China. Our results revealed that the irrigation mode had a stronger impact on the soil properties, and bacterial community than the fertilizer regime, although most indicators did not differ significantly, probably owing to the short duration of the trial. Several low-abundance bacteria were recognized to be strongly (P < 0.05) influenced by different irrigation and fertilizer regimes in the RWRS using LEfSe analysis, but no definite trends were observed among the treatments. A co-occurrence network uncovered the modular clustering patterns of bacteria, which were significantly correlated with the available phosphorus content and some soil enzyme activities. Moreover, the denitrification, nitrite respiration, and sulfur respiration capacities of soil microbes were significantly improved in the mineral fertilizer combined with the alternate wetting and moderate drying treatment. In addition, the wheat yield did not significantly (P < 0.05) decrease after water-saving irrigation regime during the previous rice season. Further research is warranted to elucidate the long-term effects of partial substitution of chemical nitrogen with organic nitrogen and water-saving irrigation regimes on an RWRS.

Suggested Citation

  • Tian, Guangli & Qiu, Husen & Wang, Yuting & Zhou, Xinguo & Li, Dongwei, 2022. "Short-term legacy effects of rice season irrigation and fertilization on the soil bacterial community of the subsequent wheat season in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s037837742100723x
    DOI: 10.1016/j.agwat.2021.107446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742100723X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    2. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    3. Avanthi Deshani Igalavithana & Sang Soo Lee & Nabeel Khan Niazi & Young-Han Lee & Kye Hoon Kim & Jeong-Hun Park & Deok Hyun Moon & Yong Sik Ok, 2017. "Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhaoyang & Li, Wenhao & Wang, Jiulong & Zhang, Jinzhu & Wang, Zhenhua, 2023. "Drip irrigation shapes the soil bacterial communities and enhances jujube yield by regulating the soil moisture content and nutrient levels," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Rommel, Jens & Anggraini, Eva, 2018. "Spatially explicit framed field experiments on ecosystem services governance," Ecosystem Services, Elsevier, vol. 34(PB), pages 201-205.
    3. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    4. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    5. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    6. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    7. Ongolo, Symphorien & Giessen, Lukas & Karsenty, Alain & Tchamba, Martin & Krott, Max, 2021. "Forestland policies and politics in Africa: Recent evidence and new challenges," Forest Policy and Economics, Elsevier, vol. 127(C).
    8. Marcela Prokopová & Luca Salvati & Gianluca Egidi & Ondřej Cudlín & Renata Včeláková & Radek Plch & Pavel Cudlín, 2019. "Envisioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    9. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    10. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    11. Abdulai, Issaka & Hoffmann, Munir P. & Jassogne, Laurence & Asare, Richard & Graefe, Sophie & Tao, Hsiao-Hang & Muilerman, Sander & Vaast, Philippe & Van Asten, Piet & Läderach, Peter & Rötter, Reimun, 2020. "Variations in yield gaps of smallholder cocoa systems and the main determining factors along a climate gradient in Ghana," Agricultural Systems, Elsevier, vol. 181(C).
    12. Qian Sun & Mingjie Wu & Peiyu Du & Wei Qi & Xinyang Yu, 2022. "Spatial Layout Optimization and Simulation of Cultivated Land Based on the Life Community Theory in a Mountainous and Hilly Area of China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    13. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
    14. Heider, Katharina & Quaranta, Emanuele & García Avilés, José María & Rodriguez Lopez, Juan Miguel & Balbo, Andrea L. & Scheffran, Jürgen, 2022. "Reinventing the wheel – The preservation and potential of traditional water wheels in the terraced irrigated landscapes of the Ricote Valley, southeast Spain," Agricultural Water Management, Elsevier, vol. 259(C).
    15. Pascale Bazoche & Nicolas Guinet & Sylvaine Poret & Sabrina Teyssier, 2021. "Does the provision of information increase the substitution of animal proteins with plant-based proteins? An experimental investigation into consumer choices," Working Papers SMART 21-07, INRAE UMR SMART.
    16. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    17. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    18. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    19. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    20. Yibo Luan & Wenquan Zhu & Xuefeng Cui & Günther Fischer & Terence P. Dawson & Peijun Shi & Zhenke Zhang, 2019. "Cropland yield divergence over Africa and its implication for mitigating food insecurity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 707-734, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s037837742100723x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.