IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics0378377421006673.html
   My bibliography  Save this article

Optimized algorithm for evapotranspiration retrieval via remote sensing

Author

Listed:
  • Wagner Wolff,
  • Francisco, João Paulo
  • Flumignan, Danilton Luiz
  • Marin, Fábio Ricardo
  • Folegatti, Marcos Vinícius

Abstract

Many algorithms for surface energy balance (SEB) based on remote sensing (RS) have been advanced to determine evapotranspiration (ET). These algorithms were developed for specific conditions (e.g., sensors, land use, and crop management) in which functions and empirical parameters within its algorithms concur with those conditions. Therefore, this study aims to develop a SEB-RS algorithm for retrieving ET adjusted to in situ observations. The study was conducted in two experimental fields in Brazil with the crops Jatropha curcas, maize, soybean, and sugarcane. We used multispectral images from the orbital sensors, Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) coupled in Landsat 8 satellite and from the terrestrial sensor, Altum, on board of an unmanned aerial vehicle. The proposed algorithm termed as Ground-truthed Surface Energy Balance (GT-SEB) is based on physical formulation of SEB-RS algorithms, where two extra computational processes using in situ ET observations were proposed for originating the new algorithm. The first additional process for optimizing the automatic “anchor” pixels selection and another for algorithm parameters optimization. Thus, both processes aim to reduce the difference between the observed ET and estimated by GT-SEB. Being assessed for both orbital (OLI/TIRS) and suborbital (Altum) sensors, the GT-SEB yielded excellent results (root-mean-square-error, RMSE, ≤ 0.48 mm and modified Kling-Gupta efficiency, KGE, ≥ 0.92). In addition to GT-SEB being an optimized algorithm, it uses a classic parameterization of SEB-RS algorithms, providing efficiency and scalability for other remote sensors, climates, and surfaces.

Suggested Citation

  • Wagner Wolff, & Francisco, João Paulo & Flumignan, Danilton Luiz & Marin, Fábio Ricardo & Folegatti, Marcos Vinícius, 2022. "Optimized algorithm for evapotranspiration retrieval via remote sensing," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006673
    DOI: 10.1016/j.agwat.2021.107390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gago, J. & Douthe, C. & Coopman, R.E. & Gallego, P.P. & Ribas-Carbo, M. & Flexas, J. & Escalona, J. & Medrano, H., 2015. "UAVs challenge to assess water stress for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 153(C), pages 9-19.
    2. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    3. Wang, Tianxin & Melton, Forrest S. & Pôças, Isabel & Johnson, Lee F. & Thao, Touyee & Post, Kirk & Cassel-Sharma, Florence, 2021. "Evaluation of crop coefficient and evapotranspiration data for sugar beets from landsat surface reflectances using micrometeorological measurements and weighing lysimetry," Agricultural Water Management, Elsevier, vol. 244(C).
    4. da Silva, Evandro H.F.M. & Gonçalves, Alexandre O. & Pereira, Rodolfo A. & Fattori Júnior, Izael M. & Sobenko, Luiz R. & Marin, Fábio R., 2019. "Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil," Agricultural Water Management, Elsevier, vol. 218(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rangaswamy Madugundu & Khalid A. Al-Gaadi & ElKamil Tola & Salah El-Hendawy & Samy A. Marey, 2023. "Mapping of Evapotranspiration and Determination of the Water Footprint of a Potato Crop Grown in Hyper-Arid Regions in Saudi Arabia," Sustainability, MDPI, vol. 15(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    2. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    4. Alfredo Valdes Ramos & Elsa N. Aguilera Gonzalez & Gloria Tobón Echeverri & Luis Samaniego Moreno & Lourdes Díaz Jiménez & Salvador Carlos Hernández, 2019. "Potential Uses of Treated Municipal Wastewater in a Semiarid Region of Mexico," Sustainability, MDPI, vol. 11(8), pages 1-23, April.
    5. França, Ana Carolina Ferreira & Coelho, Rubens Duarte & da Silva Gundim, Alice & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto, 2024. "Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties," Agricultural Water Management, Elsevier, vol. 293(C).
    6. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Pei Wang & Jingjing Ma & Juanjuan Ma & Haitao Sun & Qi Chen, 2021. "A Novel Approach for the Simulation of Reference Evapotranspiration and Its Partitioning," Agriculture, MDPI, vol. 11(5), pages 1-12, April.
    8. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    9. Hwanjo Chung & Seunghwan Wi & Byoung-Kwan Cho & Hoonsoo Lee, 2024. "Classification of Garlic ( Allium sativum L.) Crops by Fertilizer Differences Using Ground-Based Hyperspectral Imaging System," Agriculture, MDPI, vol. 14(8), pages 1-20, July.
    10. Salgado, Ramiro & Mateos, Luciano, 2021. "Evaluation of different methods of estimating ET for the performance assessment of irrigation schemes," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Gago, Jorge & Ribas-Carbó, Miquel & Galmés, Jeroni, 2022. "High-throughput phenotyping of a large tomato collection under water deficit: Combining UAVs’ remote sensing with conventional leaf-level physiologic and agronomic measurements," Agricultural Water Management, Elsevier, vol. 260(C).
    12. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Romero-Trigueros, Cristina & Nortes, Pedro A. & Alarcón, Juan J. & Hunink, Johannes E. & Parra, Margarita & Contreras, Sergio & Droogers, Peter & Nicolás, Emilio, 2017. "Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing," Agricultural Water Management, Elsevier, vol. 183(C), pages 60-69.
    14. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    15. Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).
    16. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    17. Ihuoma, Samuel O. & Madramootoo, Chandra A., 2019. "Crop reflectance indices for mapping water stress in greenhouse grown bell pepper," Agricultural Water Management, Elsevier, vol. 219(C), pages 49-58.
    18. Grados, D. & Reynarfaje, X. & Schrevens, E., 2020. "A methodological approach to assess canopy NDVI–based tomato dynamics under irrigation treatments," Agricultural Water Management, Elsevier, vol. 240(C).
    19. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    20. Graciele Angnes & Adriano Valentim Diotto & Efthymios Rodias & Thiago Libório Romanelli, 2023. "Water and Carbon Footprints of Biomass Production Assets: Drip and Center Pivot Irrigation Systems," Sustainability, MDPI, vol. 15(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.