IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421002614.html
   My bibliography  Save this article

Attribution of meteorological, hydrological and agricultural drought propagation in different climatic regions of China

Author

Listed:
  • Ding, Yibo
  • Gong, Xinglong
  • Xing, Zhenxiang
  • Cai, Huanjie
  • Zhou, Zhaoqiang
  • Zhang, Doudou
  • Sun, Peng
  • Shi, Haiyun

Abstract

Drought propagation describes the changes in a drought signal as it moves from one major type of drought to another. It is important to investigate the propagation among meteorological, agricultural and hydrological drought, as well as their major impacting factors, to improve understanding of the drought propagation relationship, monitor agricultural drought and reduce crop losses. This study presents the first exploration of the interplay between multiple droughts among different climate zones and seasons in China. The standardized precipitation evapotranspiration index (SPEI), standardized runoff index (SRI) and self-calibrating Palmer drought severity index (scPDSI) were used to represent meteorological, agricultural and hydrological drought, respectively. The Pearson correlation coefficient was used to analyze the propagation relationships among different droughts and identify the most sensitive season for drought propagation. The Lindeman–Merenda–Gold (LMG) method was used to quantify the relative importance of PRE (precipitation), PET (potential evapotranspiration) and SM (soil moisture) to hydrological and agricultural drought. The propagation from meteorological to agricultural drought was prominent in different seasons at the annual scale over China. In general, the propagation relationship from agricultural to hydrological drought was weaker than that from meteorological to agricultural drought. In Northern China (arid and semi-arid areas), there was a stronger propagation relationship from agricultural to hydrological drought in summer and autumn than in spring. There was also stronger propagation from agricultural to hydrological drought in eastern China than in western China. Different climate regions had different major factors driving hydrological drought because of the different climate characteristics. However, SM was generally the most important driving factor for agricultural drought in all climate regions. Mulching plastic film might be an effective and feasible method to reduce PET from soil evaporation in sub-regions that apply high irrigation levels. These findings may also be applied to strengthen the study of artificial regulation of water resources, which could be an approach to reducing crop losses from drought.

Suggested Citation

  • Ding, Yibo & Gong, Xinglong & Xing, Zhenxiang & Cai, Huanjie & Zhou, Zhaoqiang & Zhang, Doudou & Sun, Peng & Shi, Haiyun, 2021. "Attribution of meteorological, hydrological and agricultural drought propagation in different climatic regions of China," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002614
    DOI: 10.1016/j.agwat.2021.106996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of multi-level water use efficiency between plastic film partially mulched and non-mulched croplands at eastern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 215-226.
    2. Zhou, Keke & Li, Jianzhu & Zhang, Ting & Kang, Aiqing, 2021. "The use of combined soil moisture data to characterize agricultural drought conditions and the relationship among different drought types in China," Agricultural Water Management, Elsevier, vol. 243(C).
    3. N/A, 2004. "Index for 2004," European Union Politics, , vol. 5(4), pages 511-512, December.
    4. Wang, Yajun & Xie, Zhongkui & Malhi, Sukhdev S. & Vera, Cecil L. & Zhang, Yubao & Wang, Jinniu, 2009. "Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 96(3), pages 374-382, March.
    5. Huang, Shengzhi & Huang, Qiang & Chang, Jianxia & Leng, Guoyong & Xing, Li, 2015. "The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 45-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Cun & Liang, Chuan & Zhao, Lu & Jiang, Shouzheng & Niu, Kaijie & Zhang, Yaling, 2023. "Multifractal characteristics of multiscale drought in the Yellow River Basin, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Jiangtao Yu & Hangnan Yu & Lan Li & Weihong Zhu, 2024. "Spatial and Temporal Changes in Soil Freeze-Thaw State and Freezing Depth of Northeast China and Their Driving Factors," Land, MDPI, vol. 13(3), pages 1-21, March.
    4. Qianchuan Mi & Chuanyou Ren & Yanhua Wang & Xining Gao & Limin Liu & Yue Li, 2023. "A robust ensemble drought index: construction and assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1139-1159, March.
    5. Yang, Yueting & Li, Kaiwei & Wei, Sicheng & Guga, Suri & Zhang, Jiquan & Wang, Chunyi, 2022. "Spatial-temporal distribution characteristics and hazard assessment of millet drought disaster in Northern China under climate change," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Pan, Ying & Zhu, Yonghua & Lü, Haishen & Yagci, Ali Levent & Fu, Xiaolei & Liu, En & Xu, Haiting & Ding, Zhenzhou & Liu, Ruoyu, 2023. "Accuracy of agricultural drought indices and analysis of agricultural drought characteristics in China between 2000 and 2019," Agricultural Water Management, Elsevier, vol. 283(C).
    7. Amogh Gyaneshwar & Anirudh Mishra & Utkarsh Chadha & P. M. Durai Raj Vincent & Venkatesan Rajinikanth & Ganapathy Pattukandan Ganapathy & Kathiravan Srinivasan, 2023. "A Contemporary Review on Deep Learning Models for Drought Prediction," Sustainability, MDPI, vol. 15(7), pages 1-31, April.
    8. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    9. Yang, Beibei & Cui, Qian & Meng, Yizhuo & Zhang, Zhen & Hong, Zhiming & Hu, Fengmin & Li, Junjie & Tao, Chongxin & Wang, Zhe & Zhang, Wen, 2023. "Combined multivariate drought index for drought assessment in China from 2003 to 2020," Agricultural Water Management, Elsevier, vol. 281(C).
    10. Huang, Wenhuan & Wang, Hailong, 2021. "Drought and intensified agriculture enhanced vegetation growth in the central Pearl River Basin of China," Agricultural Water Management, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yifei & Huang, Shengzhi & Wang, Hanye & Zheng, Xudong & Huang, Qiang & Deng, Mingjiang & Peng, Jian, 2022. "High-resolution propagation time from meteorological to agricultural drought at multiple levels and spatiotemporal scales," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Xu, Yang & Hao, Fanghua, 2021. "Agricultural drought prediction in China based on drought propagation and large-scale drivers," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Chong Du & Jiashuo Chen & Tangzhe Nie & Changlei Dai, 2022. "Spatial–temporal changes in meteorological and agricultural droughts in Northeast China: change patterns, response relationships and causes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 155-173, January.
    4. Olunifesi Adekunle Suraj, 2016. "Managing Telecommunications for Development: An Analysis of Intellectual Capital in Nigerian Telecommunication Industry," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-30, March.
    5. Allais, Olivier & Etilé, Fabrice & Lecocq, Sébastien, 2015. "Mandatory labels, taxes and market forces: An empirical evaluation of fat policies," Journal of Health Economics, Elsevier, vol. 43(C), pages 27-44.
    6. Sakinah Mat Zin & Ahmad Azrin Adnan & Iskandar Hasan Abdullah, 2017. "How Can Ibn Khaldun’s Economic Philosophy Revive the Intellectual Capital of Entrepreneurs," Asian Social Science, Canadian Center of Science and Education, vol. 13(6), pages 164-164, June.
    7. Sandy Tubeuf & Marc Perronnin, 2008. "New prospects in the analysis of inequalities in health: a measurement of health encompassing several dimensions of health," Health, Econometrics and Data Group (HEDG) Working Papers 08/01, HEDG, c/o Department of Economics, University of York.
    8. Queiroz, Bernardo L & Gonzaga, Marcos Roberto & Nogales, Ana Maria & Torrente, Bruno & de Abreu, Daisy Maria Xavier, 2019. "Life expectancy, adult mortality and completeness of death counts in Brazil and regions: comparative analysis of IHME, IBGE and other researchers estimates of levels and trends," OSF Preprints pj3sx, Center for Open Science.
    9. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.
    10. Barnabé Walheer, 2018. "Cost Malmquist productivity index: an output-specific approach for group comparison," Journal of Productivity Analysis, Springer, vol. 49(1), pages 79-94, February.
    11. Bushra Khalid & Bueh Cholaw & Débora Souza Alvim & Shumaila Javeed & Junaid Aziz Khan & Muhammad Asif Javed & Azmat Hayat Khan, 2018. "Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 971-993, June.
    12. Chhanda Ruj & Aloke Majumdar & Somnath Ghosal, 2022. "Political ecology and hydrosocial relation: a study on drought and associated migration in a semi-arid district of West Bengal, India," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 709-734, December.
    13. Alcaniz, Leire & Gomez-Bezares, Fernando & Roslender, Robin, 2011. "Theoretical perspectives on intellectual capital: A backward look and a proposal for going forward," Accounting forum, Elsevier, vol. 35(2), pages 104-117.
    14. Pradeep Kumar Vyas & Suresh V Rang & Jayant R Shah & Rajiv S Mathur & Gaurav Ghatavat & Priyanka Chaudhary, 2017. "Six Minute Walk Test as a Criteria for Evaluation of Functional Status and Disability by One Time Single Measurement of Distance Walked in Six Minutes for Breathless Patients," International Journal of Pulmonary & Respiratory Sciences, Juniper Publishers Inc., vol. 1(3), pages 1-9, March.
    15. Wolswijk, Guido & de Haan, Jakob, 2005. "Government debt management in the euro area - recent theoretical developments and changes in practices," Occasional Paper Series 25, European Central Bank.
    16. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Kwaku Ohene-Asare & Jones Kofi Anyimadu Asare & Charles Turkson, 2019. "Dynamic cost productivity and economies of scale of Ghanaian insurers," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 44(1), pages 148-177, January.
    18. Kaiwen Li & Ming Wang & Kai Liu, 2021. "The Study on Compound Drought and Heatwave Events in China Using Complex Networks," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    19. Wu, Jie & Feng, Yu & Liang, Lili & He, Xinyue & Zeng, Zhenzhong, 2022. "Assessing evapotranspiration observed from ECOSTRESS using flux measurements in agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).
    20. Robert Coats & Mariza Costa-Cabral & John Riverson & John Reuter & Goloka Sahoo & Geoffrey Schladow & Brent Wolfe, 2013. "Projected 21st century trends in hydroclimatology of the Tahoe basin," Climatic Change, Springer, vol. 116(1), pages 51-69, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.