IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i3p368-d1357049.html
   My bibliography  Save this article

Spatial and Temporal Changes in Soil Freeze-Thaw State and Freezing Depth of Northeast China and Their Driving Factors

Author

Listed:
  • Jiangtao Yu

    (College of Geography and Ocean Sciences, Yanbian University, Yanji 133000, China)

  • Hangnan Yu

    (College of Geography and Ocean Sciences, Yanbian University, Yanji 133000, China)

  • Lan Li

    (College of Geography and Ocean Sciences, Yanbian University, Yanji 133000, China)

  • Weihong Zhu

    (College of Geography and Ocean Sciences, Yanbian University, Yanji 133000, China)

Abstract

It is necessary to further investigate the spatial considerations, temporal characteristics, and drivers of change affecting the beginning and end of soil freezing and thawing, including the maximum depth of the seasonal freezing (MDSF) and the active layer thickness (ALT) in Northeast China. Hourly soil temperature, among other data, from 1983–2022 were investigated, showing a delay of about 6 days in freezing. In contrast, thawing and complete thawing advanced by about 26 and 20 d, respectively. The freezing period and total freeze-thaw days decreased by about 29 and 23 days, respectively. The number of complete thawing period days increased by about 22 days, while the MDSF decreased by about 25 cm. The ALT increased by about 22 cm. Land Surface Temperature (LST) is the main factor influencing the beginning and end of soil freezing and thawing, MDSF and ALT changes in Northeast China; air temperature, surface net solar radiation, and volumetric soil water content followed. The influence of the interacting factors was greater than the single factors, and the interactive explanatory power of the LST and surface net solar radiation was highest when the soil started to freeze (0.858). The effect of the LST and the air temperature was highest when the soil was completely thawed (0.795). LST and the volumetric soil water content interacted to have the first explanatory power for MDSF (0.866) and ALT (0.85). The results of this study can provide scientific reference for fields such as permafrost degradation, cold zone ecological environments, and agricultural production in Northeast China.

Suggested Citation

  • Jiangtao Yu & Hangnan Yu & Lan Li & Weihong Zhu, 2024. "Spatial and Temporal Changes in Soil Freeze-Thaw State and Freezing Depth of Northeast China and Their Driving Factors," Land, MDPI, vol. 13(3), pages 1-21, March.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:368-:d:1357049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/3/368/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/3/368/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Yibo & Gong, Xinglong & Xing, Zhenxiang & Cai, Huanjie & Zhou, Zhaoqiang & Zhang, Doudou & Sun, Peng & Shi, Haiyun, 2021. "Attribution of meteorological, hydrological and agricultural drought propagation in different climatic regions of China," Agricultural Water Management, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Amogh Gyaneshwar & Anirudh Mishra & Utkarsh Chadha & P. M. Durai Raj Vincent & Venkatesan Rajinikanth & Ganapathy Pattukandan Ganapathy & Kathiravan Srinivasan, 2023. "A Contemporary Review on Deep Learning Models for Drought Prediction," Sustainability, MDPI, vol. 15(7), pages 1-31, April.
    3. Zhan, Cun & Liang, Chuan & Zhao, Lu & Jiang, Shouzheng & Niu, Kaijie & Zhang, Yaling, 2023. "Multifractal characteristics of multiscale drought in the Yellow River Basin, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    5. Qianchuan Mi & Chuanyou Ren & Yanhua Wang & Xining Gao & Limin Liu & Yue Li, 2023. "A robust ensemble drought index: construction and assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1139-1159, March.
    6. Pan, Ying & Zhu, Yonghua & Lü, Haishen & Yagci, Ali Levent & Fu, Xiaolei & Liu, En & Xu, Haiting & Ding, Zhenzhou & Liu, Ruoyu, 2023. "Accuracy of agricultural drought indices and analysis of agricultural drought characteristics in China between 2000 and 2019," Agricultural Water Management, Elsevier, vol. 283(C).
    7. Yang, Beibei & Cui, Qian & Meng, Yizhuo & Zhang, Zhen & Hong, Zhiming & Hu, Fengmin & Li, Junjie & Tao, Chongxin & Wang, Zhe & Zhang, Wen, 2023. "Combined multivariate drought index for drought assessment in China from 2003 to 2020," Agricultural Water Management, Elsevier, vol. 281(C).
    8. Yang, Yueting & Li, Kaiwei & Wei, Sicheng & Guga, Suri & Zhang, Jiquan & Wang, Chunyi, 2022. "Spatial-temporal distribution characteristics and hazard assessment of millet drought disaster in Northern China under climate change," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Huang, Wenhuan & Wang, Hailong, 2021. "Drought and intensified agriculture enhanced vegetation growth in the central Pearl River Basin of China," Agricultural Water Management, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:368-:d:1357049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.