IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421002602.html
   My bibliography  Save this article

Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: Overall soil quality, plant nutrient uptake, crop yields and fruit quality

Author

Listed:
  • Yan, Sihua
  • Gao, Yanming
  • Tian, Minjiao
  • Tian, Yongqiang
  • Li, Jianshe

Abstract

Since freshwater shortage is common in most regions of the world, saline water has been used to irrigate a wide range of crop species. However, continuous saline water irrigation can easily lead to soil degradation and reductions in crop yields. In this study, we measured the effects of various carbon-rich amendments (CRAs) on soil quality, plant nutrient uptake, crop yields and tomato quality under continuous saline water irrigation. The treatments considered were (i) untreated soils irrigated with freshwater (control), (ii) untreated soils irrigated with saline water (SW), (iii) soils treated with straw-C and irrigated with saline water (SW+SC), (iv) soils treated with biochar-C and irrigated with saline water (SW+BC), (v) soils treated with nano-C and irrigated with saline water (SW+NC), and (vi) soils treated with composted straw-C and irrigated with saline water (SW+CC). Soil quality was comprehensively evaluated using a soil quality index (SQI) covering a wide range of physicochemical and microbial properties. In general, continuous saline water irrigation resulted in adverse effects on soil quality (e.g. enhanced sodium adsorption ratio, reduced nutrient availability and decreased microbial activities/functions) and tomato growth (e.g. the reduction of plant biomass and fruit yield). However, these adverse effects were efficiently alleviated by the application of CRAs. Specifically, all four CRAs increased SQI under continuous saline water irrigation. There were significantly (p < 0.001) and positively relationships between SQI and crop productivity (e.g. fruit yield and plant biomass). The application of straw-C or nano-C mainly increased crop yields, while the application of biochar-C or composted straw-C primarily improved fruit quality. Overall, the application of straw-C resulted in not only the highest SQI but also the highest fruit yield, while the application of biochar-C strongly enhanced overall fruit quality under continuous saline water irrigation.

Suggested Citation

  • Yan, Sihua & Gao, Yanming & Tian, Minjiao & Tian, Yongqiang & Li, Jianshe, 2021. "Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: Overall soil quality, plant nutrient uptake, crop yields and fruit ," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002602
    DOI: 10.1016/j.agwat.2021.106995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jianshe & Gao, Yanming & Zhang, Xueyan & Tian, Ping & Li, Juan & Tian, Yongqiang, 2019. "Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality," Agricultural Water Management, Elsevier, vol. 213(C), pages 521-533.
    2. Uddameri, Venkatesh & Ghaseminejad, Ali & Hernandez, E. Annette, 2020. "A tiered stochastic framework for assessing crop yield loss risks due to water scarcity under different uncertainty levels," Agricultural Water Management, Elsevier, vol. 238(C).
    3. Murtaza, G. & Ghafoor, A. & Qadir, M., 2006. "Irrigation and soil management strategies for using saline-sodic water in a cotton-wheat rotation," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 98-114, March.
    4. Carole Dalin & Yoshihide Wada & Thomas Kastner & Michael J. Puma, 2017. "Groundwater depletion embedded in international food trade," Nature, Nature, vol. 543(7647), pages 700-704, March.
    5. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jingang & Chen, Jing & He, Pingru & Chen, Dan & Dai, Xiaoping & Jin, Qiu & Su, Xiaoyue, 2022. "The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Wang, Xiaodong & Tian, Wei & Zheng, Wende & Shah, Sadiq & Li, Jianshe & Wang, Xiaozhuo & Zhang, Xueyan, 2023. "Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Li, Wenjia & Gao, Yanming & Tian, Yongqiang & Li, Jianshe, 2022. "Double-root-grafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Ruixia Chen & Lijian Zheng & Jinjiang Zhao & Juanjuan Ma & Xufeng Li, 2023. "Biochar Application Maintains Photosynthesis of Cabbage by Regulating Stomatal Parameters in Salt-Stressed Soil," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    5. Mohamed M. Saffan & Mohamed A. Koriem & Ahmed El-Henawy & Shimaa El-Mahdy & Hassan El-Ramady & Fathy Elbehiry & Alaa El-Dein Omara & Yousry Bayoumi & Khandsuren Badgar & József Prokisch, 2022. "Sustainable Production of Tomato Plants ( Solanum lycopersicum L.) under Low-Quality Irrigation Water as Affected by Bio-Nanofertilizers of Selenium and Copper," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    6. Jiaxin Wang & Xinlin He & Ping Gong & Danqi Zhao & Yao Zhang & Zonglan Wang & Jingrui Zhang, 2022. "Optimization of a Water-Saving and Fertilizer-Saving Model for Enhancing Xinjiang Korla Fragrant Pear Yield, Quality, and Net Profits under Water and Fertilizer Coupling," Sustainability, MDPI, vol. 14(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
    2. Li, Jingang & Chen, Jing & He, Pingru & Chen, Dan & Dai, Xiaoping & Jin, Qiu & Su, Xiaoyue, 2022. "The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    4. Li, Wenjia & Gao, Yanming & Tian, Yongqiang & Li, Jianshe, 2022. "Double-root-grafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 264(C).
    5. Cao, Yune & Gao, Yanming & Li, Jianshe & Tian, Yongqiang, 2019. "Straw composts, gypsum and their mixtures enhance tomato yields under continuous saline water irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Wang, He & Zheng, Chunlian & Ning, Songrui & Cao, Caiyun & Li, Kejiang & Dang, Hongkai & Wu, Yuqing & Zhang, Junpeng, 2023. "Impacts of long-term saline water irrigation on soil properties and crop yields under maize-wheat crop rotation," Agricultural Water Management, Elsevier, vol. 286(C).
    7. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    8. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    9. Santos, Berta de los & Medina, Eduardo & Brenes, Manuel & Aguado, Ana & García, Pedro & Romero, Concepción, 2020. "Chemical composition of table olive wastewater and its relationship with the bio-fortifying capacity of tomato (Solanum lycopersicum L.) plants," Agricultural Water Management, Elsevier, vol. 227(C).
    10. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    11. Peter Horton, 2017. "We need radical change in how we produce and consume food," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1323-1327, December.
    12. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    13. El-Sayed Desoky & Abdel-Rahman Merwad, 2015. "Improving the Salinity Tolerance in Wheat Plants Using Salicylic and Ascorbic Acids," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 7(10), pages 203-203, September.
    14. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    15. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    16. Sohyun Park & Darla K Munroe & Ningchuan Xiao, 2023. "Visualizing economic drivers of virtual land trade: A case study of global cereals trade," Environment and Planning B, , vol. 50(6), pages 1695-1698, July.
    17. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    18. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    19. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    20. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.