Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2016.07.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- O'Shaughnessy, S.A. & Evett, S.R., 2010. "Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton," Agricultural Water Management, Elsevier, vol. 97(9), pages 1310-1316, September.
- Alderfasi, Ali Abdullah & Nielsen, David C., 2001. "Use of crop water stress index for monitoring water status and scheduling irrigation in wheat," Agricultural Water Management, Elsevier, vol. 47(1), pages 69-75, February.
- DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
- Zinkernagel, Jana & Maestre-Valero, Jose. F. & Seresti, Sogol Y. & Intrigliolo, Diego S., 2020. "New technologies and practical approaches to improve irrigation management of open field vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
- Jaouad El Hachimi & Abderrazak El Harti & Rachid Lhissou & Jamal-Eddine Ouzemou & Mohcine Chakouri & Amine Jellouli, 2022. "Combination of Sentinel-2 Satellite Images and Meteorological Data for Crop Water Requirements Estimation in Intensive Agriculture," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
- Bretreger, David & Yeo, In-Young & Hancock, Greg, 2022. "Quantifying irrigation water use with remote sensing: Soil water deficit modelling with uncertain soil parameters," Agricultural Water Management, Elsevier, vol. 260(C).
- El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
- Bhatti, Sandeep & Heeren, Derek M. & Evett, Steven R. & O’Shaughnessy, Susan A. & Rudnick, Daran R. & Franz, Trenton E. & Ge, Yufeng & Neale, Christopher M.U., 2022. "Crop response to thermal stress without yield loss in irrigated maize and soybean in Nebraska," Agricultural Water Management, Elsevier, vol. 274(C).
- Teshome, Fitsum T. & Bayabil, Haimanote K. & Schaffer, Bruce & Ampatzidis, Yiannis & Hoogenboom, Gerrit & Singh, Aditya, 2023. "Exploring deficit irrigation as a water conservation strategy: Insights from field experiments and model simulation," Agricultural Water Management, Elsevier, vol. 289(C).
- Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
- Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
- Ihuoma, Samuel O. & Madramootoo, Chandra A., 2019. "Crop reflectance indices for mapping water stress in greenhouse grown bell pepper," Agricultural Water Management, Elsevier, vol. 219(C), pages 49-58.
- DeJonge, Kendall C. & Thorp, Kelly R. & Brekel, Josh & Pokoski, Tyler & Trout, Thomas J., 2024. "Customizing pyfao56 for evapotranspiration estimation and irrigation scheduling at the Limited Irrigation Research Farm (LIRF), Greeley, Colorado," Agricultural Water Management, Elsevier, vol. 299(C).
- Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
- Márcio Paulo de Oliveira & Franciele Buss Frescki Kestring & Jerry Adriani Johann & Miguel Angel Uribe-Opazo & Luciana Pagliosa Carvalho Guedes, 2021. "Gold Standard Agreement Model for Precipitation Forecast in Paraná Using Bootstrap," Journal of Agricultural Studies, Macrothink Institute, vol. 9(2), pages 224-247, June.
- Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
- Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
- Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
- Katimbo, Abia & Rudnick, Daran R. & Liang, Wei-zhen & DeJonge, Kendall C. & Lo, Tsz Him & Franz, Trenton E. & Ge, Yufeng & Qiao, Xin & Kabenge, Isa & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Two source energy balance maize evapotranspiration estimates using close-canopy mobile infrared sensors and upscaling methods under variable water stress conditions," Agricultural Water Management, Elsevier, vol. 274(C).
- Allred, Barry & Martinez, Luis & Fessehazion, Melake K. & Rouse, Greg & Williamson, Tanja N. & Wishart, DeBonne & Koganti, Triven & Freeland, Robert & Eash, Neal & Batschelet, Adam & Featheringill, Ro, 2020. "Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes," Agricultural Water Management, Elsevier, vol. 232(C).
- Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
- Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
- Amazirh, Abdelhakim & Er-Raki, Salah & Ojha, Nitu & Bouras, El houssaine & Rivalland, Vincent & Merlin, Olivier & Chehbouni, Abdelghani, 2022. "Assimilation of SMAP disaggregated soil moisture and Landsat land surface temperature to improve FAO-56 estimates of ET in semi-arid regions," Agricultural Water Management, Elsevier, vol. 260(C).
- Laura Ávila-Dávila & José Miguel Molina-Martínez & Carlos Bautista-Capetillo & Manuel Soler-Méndez & Cruz Octavio Robles Rovelo & Hugo Enrique Júnez-Ferreira & Julián González-Trinidad, 2021. "Estimation of the Evapotranspiration and Crop Coefficients of Bell Pepper Using a Removable Weighing Lysimeter: A Case Study in the Southeast of Spain," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
- Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vantyghem, Mathilde & Merckx, Roel & Stevens, Bert & Hood-Nowotny, Rebecca & Swennen, Rony & Dercon, Gerd, 2022. "The potential of stable carbon isotope ratios and leaf temperature as proxies for drought stress in banana under field conditions," Agricultural Water Management, Elsevier, vol. 260(C).
- Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
- Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
- Mukherjee, Subham & Nandi, Ramprosad & Kundu, Arnab & Bandyopadhyay, Prasanta Kumar & Nalia, Arpita & Ghatak, Priyanka & Nath, Rajib, 2022. "Soil water stress and physiological responses of chickpea (Cicer arietinum L.) subject to tillage and irrigation management in lower Gangetic plain," Agricultural Water Management, Elsevier, vol. 263(C).
- Drechsler, Kelley & Kisekka, Isaya & Upadhyaya, Shrinivasa, 2019. "A comprehensive stress indicator for evaluating plant water status in almond trees," Agricultural Water Management, Elsevier, vol. 216(C), pages 214-223.
- Khorsand, Afshin & Rezaverdinejad, Vahid & Asgarzadeh, Hossein & Majnooni-Heris, Abolfazl & Rahimi, Amir & Besharat, Sina, 2019. "Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
- Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
- Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
- Erdem, Yesim & Arin, Levent & Erdem, Tolga & Polat, Serdar & Deveci, Murat & Okursoy, Hakan & Gültas, Hüseyin T., 2010. "Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica)," Agricultural Water Management, Elsevier, vol. 98(1), pages 148-156, December.
- O'Shaughnessy, S.A. & Evett, S.R. & Colaizzi, P.D. & Howell, T.A., 2011. "Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton," Agricultural Water Management, Elsevier, vol. 98(10), pages 1523-1535, August.
- Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
- Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
- Li, Xiumei & Zhao, Weixia & Li, Jiusheng & Li, Yanfeng, 2019. "Maximizing water productivity of winter wheat by managing zones of variable rate irrigation at different deficit levels," Agricultural Water Management, Elsevier, vol. 216(C), pages 153-163.
- Al-Kayssi, A.W. & Shihab, R.M. & Mustafa, S.H., 2011. "Impact of soil water stress on Nigellone oil content of black cumin seeds grown in calcareous-gypsifereous soils," Agricultural Water Management, Elsevier, vol. 100(1), pages 46-57.
- Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
- Katimbo, Abia & Rudnick, Daran R. & Liang, Wei-zhen & DeJonge, Kendall C. & Lo, Tsz Him & Franz, Trenton E. & Ge, Yufeng & Qiao, Xin & Kabenge, Isa & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Two source energy balance maize evapotranspiration estimates using close-canopy mobile infrared sensors and upscaling methods under variable water stress conditions," Agricultural Water Management, Elsevier, vol. 274(C).
- Garibay, Victoria M. & Kothari, Kritika & Ale, Srinivasulu & Gitz, Dennis C. & Morgan, Gaylon D. & Munster, Clyde L., 2019. "Determining water-use-efficient irrigation strategies for cotton using the DSSAT CSM CROPGRO-cotton model evaluated with in-season data," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Lebourgeois, V. & Chopart, J.-L. & Bégué, A. & Le Mézo, L., 2010. "Towards using a thermal infrared index combined with water balance modelling to monitor sugarcane irrigation in a tropical environment," Agricultural Water Management, Elsevier, vol. 97(1), pages 75-82, January.
- Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2021. "The mean value of gaussian distribution of excess green index: A new crop water stress indicator," Agricultural Water Management, Elsevier, vol. 251(C).
- Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
More about this item
Keywords
Canopy temperature; Crop coefficient; Crop water stress index; DANS index; DACT index;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:179:y:2017:i:c:p:64-73. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.