IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v251y2021ics0378377421001232.html
   My bibliography  Save this article

Impact of climate change on Swedish agriculture: Growing season rain deficit and irrigation need

Author

Listed:
  • Grusson, Youen
  • Wesström, Ingrid
  • Joel, Abraham

Abstract

Over 90% of Swedish agriculture is rainfed, and thus future climate change can pose a risk to agricultural production in coming decades. An overall increase in annual precipitation is predicted for northern Europe, but Sweden could still face an increasing need for irrigation, as shown by the drought summer of 2018. Adaptation of Swedish agriculture to include irrigated agriculture should thus be considered. To evaluate the theoretical need for irrigation, calculations were performed for different locations in Sweden, and for different soil-crop pairs at each location. In-situ weather data from a projected climate dataset created by the Swedish Meteorological and Hydrological Institute were used to evaluate changes in irrigation need over the period 1981–2050. The results showed an increasing need for irrigation of cereal crops during the early season (May–June), for two main reasons: i) A shift to an earlier start of the cropping period, leading to an earlier need for irrigation; and ii) a higher probability of dry spring weather, substantially increasing the irrigation requirement in dry years. Crops for which the growing season starts later (e.g., potatoes) showed an increasing need for irrigation during July. Crop development stages were predicted to occur earlier, leading to earlier harvesting, reducing the irrigation requirement in August. However, the calculation approach developed for this study may have underestimated the need for irrigation, which could be higher than reported here.

Suggested Citation

  • Grusson, Youen & Wesström, Ingrid & Joel, Abraham, 2021. "Impact of climate change on Swedish agriculture: Growing season rain deficit and irrigation need," Agricultural Water Management, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:agiwat:v:251:y:2021:i:c:s0378377421001232
    DOI: 10.1016/j.agwat.2021.106858
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421001232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory McCabe & David Wolock, 2015. "Increasing Northern Hemisphere water deficit," Climatic Change, Springer, vol. 132(2), pages 237-249, September.
    2. Battude, Marjorie & Al Bitar, Ahmad & Brut, Aurore & Tallec, Tiphaine & Huc, Mireille & Cros, Jérôme & Weber, Jean-Jacques & Lhuissier, Ludovic & Simonneaux, Vincent & Demarez, Valérie, 2017. "Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery," Agricultural Water Management, Elsevier, vol. 189(C), pages 123-136.
    3. Miroslav Trnka & Reimund P. Rötter & Margarita Ruiz-Ramos & Kurt Christian Kersebaum & Jørgen E. Olesen & Zdeněk Žalud & Mikhail A. Semenov, 2014. "Adverse weather conditions for European wheat production will become more frequent with climate change," Nature Climate Change, Nature, vol. 4(7), pages 637-643, July.
    4. Vimal Mishra & Rohini Kumar & Harsh L. Shah & Luis Samaniego & S. Eisner & Tao Yang, 2017. "Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change," Climatic Change, Springer, vol. 141(3), pages 451-465, April.
    5. V. Savo & D. Lepofsky & J. P. Benner & K. E. Kohfeld & J. Bailey & K. Lertzman, 2016. "Observations of climate change among subsistence-oriented communities around the world," Nature Climate Change, Nature, vol. 6(5), pages 462-473, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elkadeem, Mohamed R. & Zainali, Sebastian & Lu, Silvia Ma & Younes, Ali & Abido, Mohamed A. & Amaducci, Stefano & Croci, Michele & Zhang, Jie & Landelius, Tomas & Stridh, Bengt & Campana, Pietro Elia, 2024. "Agrivoltaic systems potentials in Sweden: A geospatial-assisted multi-criteria analysis," Applied Energy, Elsevier, vol. 356(C).
    2. Campana, P.E. & Lastanao, P. & Zainali, S. & Zhang, J. & Landelius, T. & Melton, F., 2022. "Towards an operational irrigation management system for Sweden with a water–food–energy nexus perspective," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    2. Pisor, Anne & Touma, Danielle & Singh, Deepti & Jones, James Holland, 2023. "To understand climate change adaptation we must characterize climate variability. Here’s how," OSF Preprints r382h, Center for Open Science.
    3. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    4. Caviedes, Julián & Ibarra, José Tomás & Calvet-Mir, Laura & Álvarez-Fernández, Santiago & Junqueira, André Braga, 2024. "Indigenous and local knowledge on social-ecological changes is positively associated with livelihood resilience in a Globally Important Agricultural Heritage System," Agricultural Systems, Elsevier, vol. 216(C).
    5. Jose Oteros & Herminia García-Mozo & Roser Botey & Antonio Mestre & Carmen Galán, 2015. "Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012)," Climatic Change, Springer, vol. 130(4), pages 545-558, June.
    6. Liu, Xing & Lehtonen, Heikki & Purola, Tuomo & Pavlova, Yulia & Rötter, Reimund & Palosuo, Taru, 2016. "Dynamic economic modelling of crop rotations with farm management practices under future pest pressure," Agricultural Systems, Elsevier, vol. 144(C), pages 65-76.
    7. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    8. Milica Kanjevac & Biljana Bojović & Andrija Ćirić & Milan Stanković & Dragana Jakovljević, 2022. "Seed Priming Improves Biochemical and Physiological Performance of Wheat Seedlings under Low-Temperature Conditions," Agriculture, MDPI, vol. 13(1), pages 1-15, December.
    9. Andersen, Lykke E. & Breisinger, Clemens & Jemio, Luis Carlos & Mason-D’Croz, Daniel & Ringler, Claudia & Robertson, Richard D. & Verner, Dorte & Wiebelt, Manfred, 2016. "Climate change impacts and household resilience: Prospects for 2050 in Brazil, Mexico, and Peru," Food policy reports 978-0-89629-581-0, International Food Policy Research Institute (IFPRI).
    10. Sonia Quiroga & Cristina Suárez & Juan Diego Solís & Pablo Martínez-Juárez, 2017. "A microeconometric analysis of climate change drivers for coffee crops transition to cacao in Mesoamerican countries," Proceedings of Economics and Finance Conferences 4507415, International Institute of Social and Economic Sciences.
    11. Segovia-Cardozo, Daniel Alberto & Rodríguez-Sinobas, Leonor & Zubelzu, Sergio, 2019. "Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images," Agricultural Water Management, Elsevier, vol. 212(C), pages 241-251.
    12. Uttam Babu Shrestha & Asheshwor Man Shrestha & Suman Aryal & Sujata Shrestha & Madhu Sudan Gautam & Hemant Ojha, 2019. "Climate change in Nepal: a comprehensive analysis of instrumental data and people’s perceptions," Climatic Change, Springer, vol. 154(3), pages 315-334, June.
    13. Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
    14. Žalud, Zdeněk & Hlavinka, Petr & Prokeš, Karel & Semerádová, Daniela & Balek Jan, & Trnka, Miroslav, 2017. "Impacts of water availability and drought on maize yield – A comparison of 16 indicators," Agricultural Water Management, Elsevier, vol. 188(C), pages 126-135.
    15. Wittwer, Raphaël A. & Klaus, Valentin H. & Miranda Oliveira, Emily & Sun, Qing & Liu, Yujie & Gilgen, Anna K. & Buchmann, Nina & van der Heijden, Marcel G.A., 2023. "Limited capability of organic farming and conservation tillage to enhance agroecosystem resilience to severe drought," Agricultural Systems, Elsevier, vol. 211(C).
    16. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    17. V. Savo & K. E. Kohfeld & J. Sillmann & C. Morton & J. Bailey & A. S. Haslerud & C. Le Quéré & D. Lepofsky, 2024. "Using human observations with instrument-based metrics to understand changing rainfall patterns," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Sarita Albagli & Allan Yu Iwama, 2022. "Citizen science and the right to research: building local knowledge of climate change impacts," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-13, December.
    19. Rebecca Jo Stormes Newman & Claudia Capitani & Colin Courtney-Mustaphi & Jessica Paula Rose Thorn & Rebecca Kariuki & Charis Enns & Robert Marchant, 2020. "Integrating Insights from Social-Ecological Interactions into Sustainable Land Use Change Scenarios for Small Islands in the Western Indian Ocean," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    20. Bucheli, Janic & Visse, Margot & Herrera, Juan & Häner, Lilia Levy & Tack, Jesse & Finger, Robert, 2022. "Precipitation causes quality losses of economic relevance in wheat production," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321208, Agricultural Economics Society - AES.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:251:y:2021:i:c:s0378377421001232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.